CuiCui

Le Réseau social des temps modernes

Spécifications Fonctionnelles détaillées

Reévision | Date Auteurs Note
v0.1 16 Janvier 2023 | Benjamin Lozes, Ugo Battiston, Mathys
Jam
v0.1.1 20 Janvier 2023 | Mathys Jam Corrections diverses
v0.1.2 24 Janvier 2023 | Mathys Jam Réorganisations des diagrammes UML et

re-centralisation du document autour des
cinq patterns

1 Introduction
Ce document est la Spécification Fonctionnelle Détaille (SFD) du projet factice Cuicui. Il formalise ’expression
des besoins du projet CuiCui. Le projet consiste en une plate-forme d’échange supportant des messages de différents

types, entre des utilisateur. Cuicui se veut étre le réseau social des temps modernes.
Ce document démontre I'utilisation de cinq pattern de conception, afin de remplis les contraintes de 'UE GLCS.

1.1 Terminologie

(Un) Cuicos Utilisateur de Cuicui

(Un) Court-CirCui | Suspension d’un utilisateur
(Un) Cuite Un message posté sur Cuicui
(Un) Thread Fil de messages

(Un) Recuite Action de référencer un message

2 Spécifications

2.1 Utilisateur

Les utilisateurs peuvent etre représenté par un pattern State. Le state contient les messages, abonnements, et
autres informations de 'utilisateur. Le conteneur permet de modifier les operations disponible pour ce compte. Ainsi,
il est facile de promouvoir un administrateur depuis un utilisateur, ce qui n’implique pas de copies des données.

User
UserState
+ constructor(state: UserState)
+ constructor(other: User] - name: string
- suspended: bool = FALSE
+ constructor(name: string
+ fetch_state() : UserState + constuctor(name: string)
+ get_state() : UserState state + is_suspended() : bool

+ set_suspended(suspended: bool) + set_suspended(suspended: bool)

+ publish<MessageType,Args>(args: Args[]) : MessageThread o
+ subscriptions() : Iterator<UserState>
+ publish<MessageType,Args>(thread: MessageThread, args: Args[]) : MessageThread
. + subscribe(target: UserState) : bool
+ print(os: stream)

+ print_all_subscriptions(os: stream) + publish_message(message: Message) : MessageThread

+ subscribe(target: User) : bool + publish_message(thread: MessageThread, message: Message) : MessageThread

FI1GURE 1 — Diagramme UML du pattern State

2.1.1 Inscription

'd ™ s ™
| Inscription | | Connexion
e A e A

e ™
| Choix d'un pseudo

<_identifiants corrects?

¢
pseudo unique et valide?

2

./- -\
| Entrée d'un mail
)

ngn

e-mail unique?

e Y
| Choix d'un mot-de-passe |
h -

Cre’étion du compt; -

FIGURE 2 — Inscription / Connexion & Cuicui

Le formulaire d’inscription devra respecter les éléments suivants :

— Une saisie "Confirmer le mot de passe" doit étre présente

— Les limitations de taille ou de format sur le mot de passe ou le nom d’utilisateur doivent étre affiché dans le
formulaire

Le systéme de connexion devra respecter les éléments de sécurité suivants :

— Les mots de passe utilisateur doivent étre stocké dans un format sécurisé.

— Les mots de passe utilisateur doivent respecter le format suivant : "<Nom d’animal> <Nom de Pays> <4
chiffres> <Nom de nourriture> <1 Symbole parmi @/[#>" Afin de respecter les derniéres normes de sé-
curité en vigueur.

2.1.2 Abonnement

Tous les comptes utilisateur disposent d’une liste d’abonnements. Cette liste se présente sous une forme de référence
vers d’autres utilisateurs. Les abonnements sont unilatéraux, un utilisateur X n’a pas besoin d’étre abonné a Y pour
que Y soit abonné a X. L’utilisateur X n’a pas besoin de confirmer ou d’autoriser I'abonnement d’Y. Les abonnements
d’un utilisateur ne peuvent étre gérés que par lui-méme. Seul 'utilisateur peut voir ses propres abonnements.

Afin de faciliter le parcours de la liste d’abonnement d’un utilisateur, nous proposons d’utiliser un pattern Iterateur.
Cela pourra se faire via les structures natives au langages, si elles existent.

Iterator<Type>

- array: Type[]
- cursor: Type

+ previous() : Type
+ current() : Type

+ next() : Type
N

UserState

- name: string
- suspended: bool = FALSE

+ constuctor(name: string)

+ is_suspended() : bool

+ set_suspended(suspended: bool)

+ subscriptions() : Iterator<UserState>

+ subscribe(target: UserState) : bool

+ publish_message(message: Message) : MessageThread

+ publish_message(thread: MessageThread, message: Message) : MessageThread

FIGURE 3 — Diagramme UML du pattern Itérateur

- -,

l A |

~ -,

I A |

[/Abonnementsk] |"Abonné5-\'| - o -
l I | | Abonnements ‘| |' Abonnés |

L v M v |

- - | lf :l ' ,,J |
s'abonne

I .‘(" I "
l . || . |

[/Abonnements‘] |"Abonné5-\'| [/-Abonnements “| |"Abonnés-\'|

I |
L /N) . () la)
1 | Abonnement Ajoute un utilisateur cible a la liste | L’utilisateur cible n’est pas infor-

des abonnements de l'utilisateur | mer du nouvel abonnement.
courant. Opération possible uni-
quement si 'utilisateur cible n’est
pas déja un abonnement.

2 Désabonnement Supprime un utilisateur cible de | L’utilisateur cible n’est pas infor-
la liste des abonnement de l'utili- | mer du désabonnement

sateur courant Opération possible
uniquement si l'utilisateur cible est
déja abonné.

2.1.3 Suspension de compte

Un compte administrateur peut suspendre un compte pour non-respect des régles de la plate-forme rendant certaines
opérations impossible a effectuer pour 1'utilisateur ciblé. Un compte administrateur ne peut suspendre un autre compte
administrateur.

-

Administrateur

ets en quarantaine
Authentifié

4), Effectuer une recherch

n
o
=
3
m
5
)

Utilisateur

"_ s'abonner / se désabonner ¢ sedéconnecter

refusé / Ecr\re une d\ffusmn “) (Llster les messages d'un utll\sateurs)
diffuser / publier
C -VU‘T un "“355393 ‘_ _ > mettre en avant / supprimer

répondre / publier

‘_Emre un message

FIGURE 4 — Suspension d’un utilisateur

La figure suivante donne une liste des opérations principales de I’application, en fonction de si elles sont autorisé
pour un compte suspendu ou non.

Connexion a la plate-forme Autorisé

Abonnement Non autorisé. Les abonnements peuvent étre nécessaire
durant l'investigation de la suspension

Désabonnement Non autorisé Les abonnements peuvent étre nécessaire
durant I'investigation de la suspension

Publication de message Non autorisé

Edition de message Non autorisé

Suppression de message Non autorisé

Rediffusion de message Non autorisé

Cloturer d’un fil de message Autorisé Des utilisateurs mal intentionné pourrait
commenter de suspension du compte sur
un des fils de 'utilisateur suspendu. Il peut
étre nécessaire de cloturer de tel fil

Mise en avant de message Non autorisé

Suppression du compte par l'utilisateur Non autorisé

Lecture de message Autorisé

Recherche d’utilisateur Autorisé

Voir le profil d’autre utilisateur Autorisé

Plus généralement, une suspension revient & mettre un compte en "lecture seule", et interdit toutes opérations qui
modifient I'état ou les données lié au compte. Ces données doivent étre conservées en 1’état pour permettre a I’équipe
d’administration de vérifier le compte.

2.1.4 Compte Administrateur

Un compte administrateur permet & certains utilisateurs choisis par le compte maitre ou d’autres administrateurs
de modérer la plate-forme en y faisant appliquer les régles d’utilisations. Il a les droits sur la fermeture d’un fil de
discussion, la suppression des messages ou la suspension d’un utilisateur.

L’ensemble des opérations administrateur doivent étre consigné dans un journal d’audit, disponible & ’ensemble
des comptes administrateur et du compte maitre. Ce journal d’audit doit étre daté et stocker sur de multiples supports
afin de garantir sa pérennité.

Ce systéme d’audit peut étre implémenté via un pattern Singleton, afin de faciliter sont accés a travers le pro-
gramme, et ce dernier est unique dans le systéme.

AuditLog

- logs: str{]

- instance: AuditLog

+ constructor()

+ get_instance() : AuditLog

+ log(message: str)

FIGURE 5 — Diagramme UML du pattern Singleton

1 Suspension de compte Place un compte utilisateur en état | L’utilisateur cible regoit une noti-
de suspension. Le compte cible ne | fication de sa suspension.
peut étre un autre administrateur
ou le compte maitre.

2 Edition d’avertissement sur un | Ajoute ou modifie un avertisse- | L’utilisateur cible est informer de

message ment sur un message d’un autre | l'avertissement
utilisateur. Les auteurs de ’aver-
tissement sont affichés aux autres
administrateurs.
3 Promotion de compte administra- | Nomme un autre compte utilisa- | Cette opération devrait afficher
teur teur comme compte administra- | deux demandes de confirmation a
teur, si ce dernier ne U'est pas déja. | 'appelant de cette opération, du a
sa nature sensible.

4 Suppression de message Retire un message de la plate- | L’auteur recoit une notification
forme, rendant son fil inaccessible | 'informant de la suppression de
également son message par un administra-

teur.
2.1.5 Compte Maitre

L’entreprise Cuicui détient un compte appelé "maitre". Ce dernier est une sur-couche d’un compte administrateur,
et c’est le seul & pouvoir accéder aux fonctionnalités critiques de 'application. Ce compte maitre n’est pas accessible par
un mot de passe contrairement aux autres, mais nécessite l'utilisation d’un systéme de connexion dédié. La connexion
au compte maitre n’est disponible que depuis les locaux de Cuicui. Le compte maitre est le seul & ne pas pouvoir étre
supprimer, ni suspendu. Il n’apparait pas dans les recherches de compte.

2.1.6

Page d’utilisateur

Lorsqu’un utilisateur cherche un autre utilisateur, il arrive sur sa page utilisateur. La page doit contenir les infor-
mations suivantes :

2.2

Pseudo unique de I'utilisateur
Photo de profil
Nombre de messages posté

Liste de référence de messages posté par 'utilisateur trié du moins récent au plus récent
Un bouton "s’abonner" pour pouvoir suivre le compte
Un bouton "notification" pour activer ou désactiver les notifications du compte lorsqu’il poste un message

Messages

Un message est toujours accompagné par des informations :

— Une miniature de la photo de profil de I'utilisateur qui a posté le message
— L’identifiant unique de 'utilisateur
La date de publication du message

Le nombre de rediffusion

Un bouton "répondre" permettant de répondre en fin de fil de discussion

— Un bouton "recuite" permettant de mettre en avant un message en 'accompagnant d’un message

— Un bouton "repost" permettant de mettre en avant un message sans 'accompagner d’un message

2.2.1 Type de messages

Quatre types de message sont possibles de posté par un utilisateur :

Message textuel Un message sous la forme d’un texte
de moins de 280 caractéres.
Image Une image de dimension 440x220

pixels au minimal et 1024x512 pixels
au maximal.

Vidéo Une vidéo de dimension mini-
male 600x600 pixels et maximal
1200x1200 pixels et ne doit pas dé-
passer 2 minutes 20 secondes.
Référence a un message de tout type | Un texte ayant les mémes
accompagné d’'un message textuel contraintes que le type de message
"message textuel" mais contenant
une référence & un message qui lui
peut étre de tout type.

2.3 Affichage d’un fils de messages

Un fil de message correspond au fil d’actualité (messages, image, vidéo ou référence) des compte qu’un utilisateur
suit. Les messages visibles d’un utilisateur sont listés dans un ordre chronologique, du plus récent aux plus anciens,
messages les uns au-dessus des autres. Lorsque l'utilisateur clique sur un message, il voit un fil de discussion lié au
message sélectionné dans ’ordre chronologique du message initial a la derniére réponse du haut vers le bas.

Au vu du fait que les messages peuvent étre agrémentés d’avertissement, étre autre sur-couches altérant ’affichage,
nous recommandons d’implémenter un pattern décorateur.

Message

date: int

+ constructor(author: UserState, date: int)

+ print(os: stream)

+ constructor()
wrapee
l 0 + public(new_message: Message)

n
MessageDecorator 1essagl + decorate<Decorator,Args>(index: int, args: Args[]) : Decorator

MessageThread

+ constructor(wrapee: Message. author: UserState, date: int)

I

AdminMessageDecorator TextMessage ImageMessage

- warning: string - message: string - url: string

+ constructor(wrapee: Message. admin: UserState, warning: string, date: int + constructor(author: UserState, message :string, date: int) + constructor(author: UserState, url :string, date: int)

+ print(os: stream) + print(os: stream) + print(os: stream)

FIGURE 6 — Diagramme UML du pattern Decorateur

2.3.1 Opérations utilisateur

Authentifié

ectuerune I’EChEI’C

s — << |
Utilisateur \ ‘\i
P

er un profil utlhsate

C Vowrson profl\ > " 7> s'abonner / se désabonner

Ry

(_ Ecmre une d\ffusm (L\ster les messages d'un utll\sateurs D

dffusM

“Voirun mEssage \

> mettre en avant / supprimer

répondre / publier

FIGURE 7 — Opérations d’un utilisateur

2.3.2 Opérations administrateur

Un administrateur est un utilisateur de base, avec des droits supplémentaires. Il dispose donc de I’ensemble des
actions présentées ci-dessus, ainsi que de celles présentées ci-dessous.

—><_ Voir un message _). Ajouter un avertissement (Supprimerun message

Admlnlstrateur
mettre en quarantaine romouvoir administrateur
sortir de quarantame

Utilisateur
non-administrateur

FIGURE 8 — Opérations d’'un administrateur

2.4 Systéme de notification

Lorsqu’un utilisateur s’abonne & un compte, il a la possibilité d’activer ou non les notifications d’un compte suivi.
Lorsque 'utilisateur suivi poste un message, une notification sera délivrée indiquant le nom du compte, ainsi qu’un
apercu du message. Si le message est textuel, seulement les 100 premiers caractéres seront visibles sinon le message
sera une description du contenu partagé (image, vidéo).

Ce systéme peut étre implémenté via un pattern observateur, ce qui permettrait de répondre aux besoins de
notifications liés aux abonnements.

Notamment, un utilisateur peut étre vu comme un "publieur", et les gens qui lui sont abonnés comme des "obser-
vateusr".

Observer

+ constructor()

+ receive(obs : Observation)
T

|
V

Observation

- message: string

+ constructor (message: str)

A

|
|
|
|
| observers
|

|

Jor

Publisher

+ constructor()

+ add_observer(observer: Observer)

+ publish(observation: Observation)

FIGURE 9 — Diagramme UML du pattern Observateur

2.5 Accés aux systémes

Lorsqu’un utilisateur le souhaite, il doit pouvoir se connecter au systéme. La connexion se fait avec un identifiant
unique ainsi qu'un mot de passe. S’il le souhaite, une fois connecté, il doit aussi pouvoir changer son mot de passe,
son adresse mail et son identifiant unique utilisé pour la connexion.

Lorsque tous les serveurs sont en maintenance ou non-opérationnel, I'utilisateur doit étre notifié de 1’état des
serveurs lors de la tentative de connexion.

3 Diagrammes UML

Le diagramme suivant décrit comment combiner ’ensemble des cing patterns vu jusqu’a présent.

(n1s :obessaw)Bo| +

Boupny : ()eouels
JI0TPNISUOD +

196 +

Boypny :8ouB)sul -

[uys :sboj -

Bompny

(und +

weans

(uoneAlesqQ :uoieAsasqo)ysiignd +

(4oM18SqQ :19AI9Sq0)IBAISSO” PPE +

(weans :so)uud +

(weans :so)uud +

(10T 781Ep "BULIS [IN "91e]SIaS HJOYINE)IofoniiSuod +

(JUT "1ep "BUL]ST oDESSall "S]eISIos) JOUINE)IoIoNIISUOD +

Ul "81ep "Bul}S TBUIUIEM "SJBISISS ‘UIWPE "0beSSajy 090 IM)IojonIiSuod +

(weans :so)uud +

(ebessayy :abessaw™ mau)olgnd +

Buwys :un - Buwys :abessaw - Buwys :Buiutem -
abessapabew| abessayIxal Jojesodaqabessapuiwpy
U 9JEP "SJeISIaS JOUINE "obESSA]\ [09UeiM)I0fNISuod +
J0je1009(: ([Jsbay :sbie ‘yui :xepul)<sbiy'i0je1009(Q>0)ei00sp + 6 Jojelodaqgabessay

()IOI5MIISU0D +

peaiy | abessapy

pealy | obessal : (ebessa|y :abessow ‘pealy | obessaly :peaiyy)abessaw ysignd +

(weass :so)uud +

(10T 781ep "o1e}SIaS] LJOUINEe)IofonijSuoo +

juriegep #

abessapy

f

oadeim

, !

| Joyine

peaiy] (oBessay : I "ysignd +
. .
IOJoNIISUOD + |00q : (eyeISUI9SN J9BIBY)aqUOSANS +
Jaysiiqnd <9)e)SI9sN>10)ela)] : (Jsuonduosgns +
::OH T (jo0q :pepuadsns)papuadsnsjes +
! —
SIOAIBSGO | |ooq : ()pepuadsns™si + | speaiyy
|
| d
! 3S7v4 = 100q :papuadsns - | _ _ _
! buLjs :BWeU -
ajejsiasn
T
Buiys :ebessaw - u’o

uoneA1ssqo

(uonensssqQ : sqo)anigoal +

(JIojoNISUoo +

-suonduosgns: |
l

adAy : ()ixau +

adA| : (Jusuno +

adA| : ()snoineud +

L 19MI3SqO

adA] :10sino -
[ledA1 :Aewe -

100q :(4esnuIWpY :J8)sanbal ‘Jasn :1asn)uiwpe o) sjowoid +

adA11esn :(Buwys :aweu)<adAJosn>se” pul +
Jasn :(Buwys :uieped)yojew +
Jasn :(Bulys :aweu)puly +

|00q :(4asn :lesn)ppe +

18SMISISE\ -J8JSEW)I00NSuod +

<adf]>103e49)]

aseqejeqiasn

E.&

siosn

Buuys ‘apueHuonosuuo))] : (Bulys :aweu ‘eseqejeqiasn :qp)joauUU0d AL} +

Jasn : ()1esn}eb +

(498 :Josn ‘|0oq :papuadsns)iesn” puadsns +

(looq :papuadsns)papuadsns™jas +

J19snJaIseN

(498 :1osn ‘eseqejeqiesn :qp)ulwpe o) ajowoid +

(498 :Jesn ‘|jooq :pepuadsns)iesn” puadsns +

JesnuIWPpY

a|pueHuORdBUUOD

|00q : (Josn :1obiey)aquosgns +

(weans :so)suonduosgns™|je juud +

(weans :sojuud +

pealyebessaly : ([Isbiy :sbie ‘peaiy) abessepy :peaiy))<sbiy‘adA|abessay>ysignd +
peauy abessa|y : ([Jsbiy :sbie)<sbiy‘adA) abessapy>ysiignd +

(looq :pspuadsns)pspuadsnsies +

ajeisiasn : ()eyeys 196 +

ajesies : ()a1ers yoie) +

a9sn

F1GURE 10 — Diagramme UML du systéme entier

