
30 / 01 / 2026

#8
30/01/2026
jean-michel.batto@cea.fr

https://gogs.eldarsoft.com/M2_IHPS

.0230/01/2026Module « Paradigmes de Programmation pour le Calcul Scientifique »















.0330/01/2026Module « Paradigmes de Programmation pour le Calcul Scientifique »

 

















.0430/01/2026Module « Paradigmes de Programmation pour le Calcul Scientifique »

























.0530/01/2026Module « Paradigmes de Programmation pour le Calcul Scientifique »



Nom du
langage

Date de
création

Cible Typologie Cocomo
(lignes /
jours)

Expressivité

Smalltalk 1980 bytecode Objet
Typ.dynamique

15 6* le C

C++ 1985 Compilateur Objet hybride
Typ.statique

25 2* le C

VHDL 1987 FPGA Procédural
Typ.statique

2 (le
FPGA)

1/6 du C

Delphi Pascal 1995 Compilateur Objet simple
Typ.statique

30 5* le C

Java 1995 bytecode Objet simple
Typ.statique

40 4* le C

Python 2003 Interpreteur Tous les
paradigmes
Typ.dynamique

40 4* le C

.0630/01/2026Module « Paradigmes de Programmation pour le Calcul Scientifique »









Go : 554 LOC per Month
C++ : 554 LOC per Month
10 FP per Month 2 * C
25 LOC/day * 22 day = 550 LOC

2017

https://www.ifpug.org/wp-content/uploads/2017/04/IYSM.-Thirty-years-of-IFPUG.-Software-Economics-and-Function-Point-Metrics-Capers-Jones.pdf

.0730/01/2026Module « Paradigmes de Programmation pour le Calcul Scientifique »













.0830/01/2026Module « Paradigmes de Programmation pour le Calcul Scientifique »

Etape Estimation
LOC

JH

A 10 1 JH

B 20

C 5

D 15

1 JH : écrire l’EB / SFD / Recette
1 JH : écrire le code et test (50 LOC)

.0930/01/2026Module « Paradigmes de Programmation pour le Calcul Scientifique »

Etape Estimation
LOC

JH

A 10 1 JH

B 20

C 5

D 15

1 JH : écrire l’EB / SFD / Recette
1 JH : écrire le code et test (50 LOC)

Attention : les IA génératives ajoutent un gain de *4 à *5 en productivité

.01030/01/2026Module « Paradigmes de Programmation pour le Calcul Scientifique »















.01130/01/2026Module « Paradigmes de Programmation pour le Calcul Scientifique »

Etape Estimation
LOC

JH

A 10 2 JH

B1 20

B2 5

C1 30

C2 5

D 15

1 JH : écrire l’EB / SFD / Recette
2 JH : écrire le code et test (85 LOC > 1J travail)

.01230/01/2026Module « Paradigmes de Programmation pour le Calcul Scientifique »

Etape Estimation
LOC

JH

A 10 1 JH

B 20

C 5

D 15

1 JH : écrire l’EB / SFD / Recette
1 JH : écrire le code et test (50 LOC)

Les étapes B et C peuvent être abstraites en POO – peut-être que l’on va doubler le code de
B et C.

Bénéfice POO : facile si c’est en mode « dent creuse » sinon, comme article JANUS.
PB lisibilité du gain et de l’anticipation (qui paye l’investissement?)

.01330/01/2026Module « Paradigmes de Programmation pour le Calcul Scientifique »















.01430/01/2026Module « Paradigmes de Programmation pour le Calcul Scientifique »

Etape Estimation
LOC

JH

A 10 2 JH

B1 20

B2 5

C1 30

C2 5

D 15

1 JH : écrire l’EB / SFD / Recette
2 JH : écrire le code et test (85 LOC > 1J travail)

.01530/01/2026Module « Paradigmes de Programmation pour le Calcul Scientifique »













.01630/01/2026Module « Paradigmes de Programmation pour le Calcul Scientifique »

Etape Estimation
LOC

JH

A 10 1 JH

B 20

C 5

D 15

1 JH : écrire l’EB / SFD / Recette
1 JH : écrire le code et test (50 LOC)

Les étapes B et C peuvent être abstraites en POO – peut-être que l’on va doubler le code de
B et C.

Bénéfice POO : facile si c’est en mode « dent creuse » sinon, qui paye?
PB lisibilité du gain et de l’investissement

.01730/01/2026Module « Paradigmes de Programmation pour le Calcul Scientifique »

M1 M2 M3 Durée JH Durée x Cout JH Cout JH

DEV1 19 20 20 59 19470 330

DEV2 0 20 20 40 13200

Durée Total 99

Cout en JH 32 670,00 €

34 303,50 € 5%contingence

Cout

interne 38 419,92 € 12%garantie

Prix client 54 885,60 € 30%marge

1 : utiliser un tableau (exemple joint)
2 : afficher les mois  permet de recoller les jalons

.01830/01/2026Module « Paradigmes de Programmation pour le Calcul Scientifique »



Vous partez de l’EB, de la SFD et des diagrammes présentés dans le document.
Vous estimez le nombre de LOC en C++ & le temps pour les TESTS
Vous estimez les JH pour une équipe de 2 DEV – mois à 20JH
A la fin, je vous demande un prix. A rendre le tableau XLS – dans le fichier les infos
pertinentes.

La synthèse du prix et vos prompts dans un document PDF.

.01930/01/2026Module « Paradigmes de Programmation pour le Calcul Scientifique »

Creational Structural Behavioral

Class Factory Method Adapter (class)

Interpreter

Template Method

Object

Abstract Factory Adapter (object)
Chain of

Responsibility

Builder Bridge Command

Prototype Composite Iterator

Singleton

Decorator Mediator

Facade Memento

Flyweight Observer

Proxy

State

Strategy

Visitor

Les 23 patterns :

Le fichier PPCS-CM8-2025/23pattern-go/23pattern-go.go donne les exemples d’invocation

.02030/01/2026Module « Paradigmes de Programmation pour le Calcul Scientifique »





private:
SubSystem1 *subsystem1;

SubSystem2 *subsystem2;

SubSystem3 *subsystem3;

SubSystem4 *subsystem4;

};

int main() {

Facade facade;

facade.operationWrapper();

}

https://godbolt.org/z/oWTWTaPc3

.02130/01/2026Module « Paradigmes de Programmation pour le Calcul Scientifique »





int main(int argc, char* argv[]) {

Singleton *singleton = Singleton::Instance();

singleton->checkSingleton();

//we create a new singleton2 but...

Singleton *singleton2 = Singleton::Instance();

singleton2->checkSingleton();

}

https://godbolt.org/z/5916Mc6Ez

.02230/01/2026Module « Paradigmes de Programmation pour le Calcul Scientifique »

// creational package pattern

// 1. Singleton Pattern

type singleton struct {

Data string

}

var (

instance *singleton

once sync.Once

)

func GetInstance() *singleton {

once.Do(func() {

instance = &singleton{Data: "I am singleton"}

})

return instance

}

.02330/01/2026Module « Paradigmes de Programmation pour le Calcul Scientifique »

// creational package pattern

// 2. Factory Method Pattern

type Animal interface {

Speak() string

}

type Dog struct{}

type Cat struct{}

func (d *Dog) Speak() string { return "Woof!" }

func (c *Cat) Speak() string { return "Meow!" }

func CreateAnimal(animalType string) Animal {

switch animalType {

case "dog":

return &Dog{}

case "cat":

return &Cat{}

default:

return nil

}

}

.02430/01/2026Module « Paradigmes de Programmation pour le Calcul Scientifique »

// creational package pattern

// 3. Abstract Factory Pattern -- définit une famille de classes interchangeables sans spécifier leur classe concrète

type Button interface {

Paint()

}

type WinButton struct{}

type MacButton struct{}

func (w *WinButton) Paint() { println("Windows button") }

func (m *MacButton) Paint() { println("Mac button") }

type GUIFactory interface {

CreateButton() Button

}

type WinFactory struct{}

type MacFactory struct{}

func (w *WinFactory) CreateButton() Button { return &WinButton{} }

func (m *MacFactory) CreateButton() Button { return &MacButton{} }

.02530/01/2026Module « Paradigmes de Programmation pour le Calcul Scientifique »

// creational package pattern

// 4. Builder Pattern

type House struct {

Windows int

Doors int

Roof string

}

type HouseBuilder struct {

house *House }

func NewHouseBuilder() *HouseBuilder {

return &HouseBuilder{house: &House{}} }

func (b *HouseBuilder) SetWindows(count int) *HouseBuilder {

b.house.Windows = count

return b }

func (b *HouseBuilder) SetDoors(count int) *HouseBuilder {

b.house.Doors = count

return b }

func (b *HouseBuilder) SetRoof(style string) *HouseBuilder {

b.house.Roof = style

return b }

func (b *HouseBuilder) Build() *House {

return b.house }}

.02630/01/2026Module « Paradigmes de Programmation pour le Calcul Scientifique »

// creational package pattern

// 5. Prototype Pattern

type Prototype interface {

Clone() Prototype

}

type ConcretePrototype struct {

Name string

}

func (p *ConcretePrototype) Clone() Prototype {

return &ConcretePrototype{Name: p.Name}

}

.02730/01/2026Module « Paradigmes de Programmation pour le Calcul Scientifique »





https://godbolt.org/z/xj6reoaGd

.02830/01/2026Module « Paradigmes de Programmation pour le Calcul Scientifique »

// structural package pattern

// 6. Adapter Pattern

type LegacyPrinter interface {

Print(s string) string

}

type MyLegacyPrinter struct{}

func (p *MyLegacyPrinter) Print(s string) string {

return fmt.Sprintf("Legacy: %s", s) }

type ModernPrinter interface {

PrintModern(s string) string }

type PrinterAdapter struct {

OldPrinter LegacyPrinter }

func (p *PrinterAdapter) PrintModern(s string) string {

return p.OldPrinter.Print(s)

}

adapter := &PrinterAdapter{OldPrinter: &MyLegacyPrinter{}}

https://go.dev/play/p/oQD5kyde2yT

.02930/01/2026Module « Paradigmes de Programmation pour le Calcul Scientifique »

// structural package pattern

// 7. Bridge Pattern

type DrawAPI interface {

DrawCircle(x, y, radius int)

}

type RedCircle struct{}

type GreenCircle struct{}

func (r *RedCircle) DrawCircle(x, y, radius int) {

fmt.Printf("Drawing red circle at (%d,%d) radius %d\n", x, y, radius)

}

func (g *GreenCircle) DrawCircle(x, y, radius int) {

fmt.Printf("Drawing green circle at (%d,%d) radius %d\n", x, y, radius)

}

type Circle struct {

api DrawAPI

X, Y, Radius int

}

func (c *Circle) SetAPI(api DrawAPI) { c.api = api }

func (c *Circle) Draw() { c.api.DrawCircle(c.X, c.Y, c.Radius) }

.03030/01/2026Module « Paradigmes de Programmation pour le Calcul Scientifique »

// structural package pattern

// 8. Composite Pattern

type Component interface {

Operation() string

}

type Leaf struct {

Name string

}

func (l *Leaf) Operation() string { return l.Name }

type Composite struct {

children []Component

}

func (c *Composite) Add(child Component) {

c.children = append(c.children, child)

}

func (c *Composite) Operation() string {

result := "Branch("

for i, child := range c.children {

result += child.Operation()

if i < len(c.children)-1 {

result += ", "

}

}

return result + ")"}

.03130/01/2026Module « Paradigmes de Programmation pour le Calcul Scientifique »

// structural package pattern

// 9. Decorator Pattern

type Coffee interface {

Cost() int

Description() string

}

type SimpleCoffee struct{}

func (s *SimpleCoffee) Cost() int { return 5 }

func (s *SimpleCoffee) Description() string { return "Simple coffee" }

type MilkDecorator struct {

Coffee Coffee

}

func (m *MilkDecorator) Cost() int { return m.Coffee.Cost() + 2 }

func (m *MilkDecorator) Description() string { return m.Coffee.Description() + ", milk" }

.03230/01/2026Module « Paradigmes de Programmation pour le Calcul Scientifique »

// structural package pattern

// 10. Facade Pattern

type SubsystemA struct{}

func (s *SubsystemA) OperationA() string { return "SubA" }

type SubsystemB struct{}

func (s *SubsystemB) OperationB() string { return "SubB" }

type Facade struct {

a *SubsystemA

b *SubsystemB

}

func NewFacade() *Facade {

return &Facade{&SubsystemA{}, &SubsystemB{}}

}

func (f *Facade) Operation() string {

return f.a.OperationA() + " + " + f.b.OperationB()

}

.03330/01/2026Module « Paradigmes de Programmation pour le Calcul Scientifique »

// structural package pattern

// 11. Flyweight Pattern

type CharacterFlyweight struct {

Char rune

}

type CharacterFactory struct {

chars map[rune]*CharacterFlyweight

}

func NewCharacterFactory() *CharacterFactory {

return &CharacterFactory{chars: make(map[rune]*CharacterFlyweight)}

}

func (f *CharacterFactory) GetCharacter(c rune) *CharacterFlyweight {

if _, ok := f.chars[c]; !ok {

f.chars[c] = &CharacterFlyweight{Char: c}

}

return f.chars[c]

}

.03430/01/2026Module « Paradigmes de Programmation pour le Calcul Scientifique »

// structural package pattern

// 12. Proxy Pattern

type Subject interface {

Request() string

}

type RealSubject struct{}

func (s *RealSubject) Request() string { return "RealSubject active" }

type Proxy struct {

realSubject *RealSubject

}

func (p *Proxy) Request() string {

if p.realSubject == nil {

p.realSubject = &RealSubject{}

}

return "Proxy: " + p.realSubject.Request()

}

.03530/01/2026Module « Paradigmes de Programmation pour le Calcul Scientifique »

// behavioral package pattern

// 13. Chain of Responsibility Pattern

type Handler interface {

SetNext(handler Handler)

Handle(request string) string

}

type BaseHandler struct {

next Handler

}

func (b *BaseHandler) SetNext(h Handler) { b.next = h }

type ConcreteHandler1 struct{ BaseHandler }

func (h *ConcreteHandler1) Handle(req string) string {

if req == "one" { return "Handled by 1" }

if h.next != nil { return h.next.Handle(req) }

return "Not handled"

}

type ConcreteHandler2 struct{ BaseHandler }

func (h *ConcreteHandler2) Handle(req string) string {

if req == "two" { return "Handled by 2" }

if h.next != nil { return h.next.Handle(req) }

return "Not handled"

}

.03630/01/2026Module « Paradigmes de Programmation pour le Calcul Scientifique »

// behavioral package pattern

// 14. Command Pattern

type Command interface { Execute() string }

type Light struct{}

func (l *Light) On() string { return "Light On" }

type LightOnCommand struct { Light *Light }

func (c *LightOnCommand) Execute() string { return c.Light.On() }

.03730/01/2026Module « Paradigmes de Programmation pour le Calcul Scientifique »

// behavioral package pattern

// 15. Interpreter Pattern

type Expression interface { Interpret() bool }

type TerminalExpression struct { Data string }

func (t *TerminalExpression) Interpret() bool { return len(t.Data) > 0 }

.03830/01/2026Module « Paradigmes de Programmation pour le Calcul Scientifique »

// behavioral package pattern

// 16. Iterator Pattern

type Iterator interface {

HasNext() bool

Next() interface{}

}

type Collection struct { Items []interface{} }

func (c *Collection) CreateIterator() Iterator {

return &CollectionIterator{collection: c}

}

type CollectionIterator struct {

collection *Collection

index int

}

func (i *CollectionIterator) HasNext() bool { return i.index < len(i.collection.Items) }

func (i *CollectionIterator) Next() interface{} {

item := i.collection.Items[i.index]

i.index++

return item

}

.03930/01/2026Module « Paradigmes de Programmation pour le Calcul Scientifique »

// behavorial package pattern

// 17. Mediator Pattern

type Mediator interface { Notify(sender interface{}, event string) }

type ConcreteMediator struct {

c1 *Component1

}

func (m *ConcreteMediator) SetComponent1(c *Component1) { m.c1 = c }

func (m *ConcreteMediator) Notify(s interface{}, e string) {

fmt.Printf("Mediator: reacting to %s\n", e)

}

type Component1 struct { Mediator Mediator }

func (c *Component1) Trigger() { c.Mediator.Notify(c, "click") }

.04030/01/2026Module « Paradigmes de Programmation pour le Calcul Scientifique »

// behavioral package pattern

// 18. Memento Pattern

type Memento struct { State string }

type Originator struct { State string }

func (o *Originator) CreateMemento() *Memento { return &Memento{State: o.State} }

func (o *Originator) RestoreMemento(m *Memento) { o.State = m.State }

.04130/01/2026Module « Paradigmes de Programmation pour le Calcul Scientifique »





https://godbolt.org/z/qMKrsoY7M

.04230/01/2026Module « Paradigmes de Programmation pour le Calcul Scientifique »

// behavioral package pattern

// 19. Observer Pattern

type Observer interface { Update(string) }

type Subject2 struct {

observers []Observer

state string

}

func (s *Subject2) Attach(o Observer) { s.observers = append(s.observers, o) }

func (s *Subject2) SetState(st string) {

s.state = st

for _, o := range s.observers { o.Update(st) }

}

type ConcreteObserver struct{ ID int }

func (o *ConcreteObserver) Update(s string) { fmt.Printf("Observer %d: state is %s\n", o.ID, s) }

.04330/01/2026Module « Paradigmes de Programmation pour le Calcul Scientifique »

// behavioral package pattern

// 20. State Pattern

type State interface { Handle() string }

type Context struct { State State }

func (c *Context) Request() string { return c.State.Handle() }

type ConcreteStateA struct{}

func (s *ConcreteStateA) Handle() string { return "State A" }

}

.04430/01/2026Module « Paradigmes de Programmation pour le Calcul Scientifique »



int main() {

Context context(new ConcreteStrategyB());

context.execute();

}



https://godbolt.org/z/zbaK3Wr5T

.04530/01/2026Module « Paradigmes de Programmation pour le Calcul Scientifique »

// behavioral package pattern

// 21. Strategy Pattern

type Strategy interface { Execute() string }

type ConcreteStrategyA struct{}

func (s *ConcreteStrategyA) Execute() string { return "Strategy A" }

type ContextStrat struct { Strategy Strategy }

func (c *ContextStrat) Execute() string { return c.Strategy.Execute() }

.04630/01/2026Module « Paradigmes de Programmation pour le Calcul Scientifique »

// behavioral package pattern

// 22. Template Method Pattern

type WorkerInterface interface {

Work() string

}

type TemplateWorker struct {

provider WorkerInterface

}

func NewWorker(p WorkerInterface) *TemplateWorker { return &TemplateWorker{provider: p} }

func (t *TemplateWorker) Execute() string {

return "Prep -> " + t.provider.Work() + " -> Clean"

}

type ConcreteWorker struct{}

func (w *ConcreteWorker) Work() string { return "Specific Task" }

.04730/01/2026Module « Paradigmes de Programmation pour le Calcul Scientifique »

// behavioral package pattern

// 23. Visitor Pattern -- pas de modification de la classe

type Visitor interface {

VisitA(*ConcreteElementA)

}

type Element interface { Accept(Visitor) }

type ConcreteElementA struct{}

func (e *ConcreteElementA) Accept(v Visitor) { v.VisitA(e) }

type ConcreteVisitor struct{}

func (v *ConcreteVisitor) VisitA(e *ConcreteElementA) { fmt.Println("Visited Element A") }

