#8

30/01/2026
jean-michel.batto@cea.fr

https://gogs.eldarsoft.com/M2_IHPS

Cycle de vie du code

Build
SFD - Receftte

Livraisons Dev / Préprod / Prod
Run
PRA
MCO
MCS

Module « Paradigmes de Programmation pour le Calcul Scientifique » universite paris-sACLAY 30/01/2026

g s, CcALCUL
L HAUTE

wws Objectifs Prix / Réalisation

{ULATION

Construire un prix =» élément déterminant de la vente !

Limiter les risques : connaitre la durée, l'effectif et la contingence.
Durée / Eftectit = en JH

Qg métriques = 1 mois 35h = 20 JH en moyenne

La qualification est décrite en 4 niveaux :
Expert - Xpert
Senior - P
Confirmé - Mid
Junior - A level

Module « Paradigmes de Programmation pour le Calcul Scientifique » universite paris-sACLAY 30/01/2026

A CUL
%% () HAUTE

NN evo. CCRFORMAN
w ULATIOR

Les qualifications
Junior

Sortie d'école
Role/Responsabilité : les activités simples/non engageantes contractuellement/pas relations externes

Confirmé

1 a2ans

Role/Responsabilité : foutes les activités simples sans relations externes/activité moyennement
complexes

Senior
3abans
Role/Responsabilité : foutes les activités avec acteurs internes/externes, supervise les Juniors
Expert
6 ANS
Role/Responsabilité : toutes les activités internes/externes, trés complexes, supervise Juniors/Confirmés

Module « Paradigmes de Programmation pour le Calcul Scientifique » universite paris-sACLAY 30/01/2026

- (i |a productivité du codeur (avant I'l|A) - COCOMO

" SIMULATION

COCON\O est un acronyme pour COnstructive COst MOdel (Modéle de
construction de co0t).

Nom du Date de ' Typologie Expressivite

langage création

Smalltalk 1980 bytecode Objet 15 6% le C
Typ.dynamique

C++ 1985 Compilateur Objet hybride 25 2% le C
Typ.statique

VHDL 1987 FPGA Procédural 2 (2le 1/6 du C
Typ.statique FPGA)

Delphi Pascal 1995 Compilateur Objet simple 30 5*le C
Typ.statique

Java 1995 bytecode Objet simple 40 4* le C
Typ.statique

Python 2003 Interpreteur Tous les 40 4* le C
paradigmes

Typ.dynamique

Module « Paradigmes de Programmation pour le Calcul Scientifique » universite paris-sACLAY 30/01/2026

LCUL
UTE

tows Cocomo /LOC / FP

{ULATION

LOC = Line Of Code, FP = Function Point (=Classe en POO)
IFPUG is a non-profit, member governed organization (USA) that endorses two types of standard methodology for software sizing.
https://www.ifoug.org/wp-content/uploads/2017/04/IYSM -Thirty-years-of-IFRUG -Software-Economics-and-Function-Point-Metrics-Capers-Jones.pdf

The LOC metric originated in the 1950's when machine language and’basic assembly were the only languages in use. In those early days coding was over 95% of the
total effort so the fixed costs of non-code work barely mattered. It @as only after high-level programming languages began to reduce coding effort and requirements and
design became progressively larger components that the LOC groblems occurred.

Table 16: Side-by-Side Comparison of function points and lines of code metrics 2017
Go : 554 LOC per Month Work Work LOC
C++ . 554 LOC per |V|0nth Languages Size in Total hours FP per Work ho;:: per
=10 FP per Month = 2 * C KLOC Workhours perFP Month Months KLOC Month
25 LOC/day * 22 day = 550 LOC Machine
1 language 640.00 119,364 119.36 111 904.27 186.51 708
2 Basic Assembly 320.00 61,182 61.18 2.16 463.50 191.19 690
3 JCL 220.69 43,125 43.13 3.06 32671 195.41 675
4 Macro Assembly ~ 213.33 41,788 41.79 3.16 31657 195.88 674
5 HIML 160.00 32,091 32.09 411 24311 200.57 658
6 C 128.00 26,273 26.27 5.02 199.04 20526 643
7 XML 128.00 26,273 26.27 502 199.04 205.26 643

Module « Paradigmes de Programmation pour le Calcul Scientifique » universite paris-sACLAY 30/01/2026

https://www.ifpug.org/wp-content/uploads/2017/04/IYSM.-Thirty-years-of-IFPUG.-Software-Economics-and-Function-Point-Metrics-Capers-Jones.pdf

S, CALCUL
Bl HAUTE

@iz -RFORMAN

{ULATION

Chiffrer/Deviser

EB : écrire un programme qui fait le tri d'1 fichier ascii avec 2 colonnes -
séparateur tabulation - trier la valeur de la premiére colonne qui est un
nom de 5 caractéres. Le résultat est un fichier.

SFD : -en C

(A) Quvrir le fichier

(B) Lire le fichier et convertir les valeurs texte (avec vérification si c’est un nom de 5
caractéres) — fermer le fichier

(C) Faire un tri
(D) Ecrire le résultat avec une tabulation

Module « Paradigmes de Programmation pour le Calcul Scientifique » universite paris-sACLAY 30/01/2026

LCUL

e TD Estimation des colts

{ULATION

Etape | Estimation
LOC

A 10 1 JH
B 20

C 5

D 15

1 JH : écrire 'EB / SFD / Recette
1 JH : écrire le code et test (50 LOC)

Module « Paradigmes de Programmation pour le Calcul Scientifique » universite paris-sACLAY 30/01/2026

LCUL

e Estimation des colts

{ULATION

Etape | Estimation
LOC

A 10 1 JH
B 20

C 5

D 15

1 JH : écrire 'EB / SFD / Recette
1 JH : écrire le code et test (50 LOC)

Attention : les IA génératives ajoutent un gain de *4 a *5 en productivité

Module « Paradigmes de Programmation pour le Calcul Scientifique » universite paris-sACLAY 30/01/2026

- e \/ision HPC - MPI

ULATION

SFD : - en C++
(A) Ouvrir le fichier

(B1) Lire le fichier et convettir les valeurs (avec vérification si c’est un nombre) —
fermer le fichier

(B2)Initialiser les noeuds MPI

Distribuer le tri MPI (C1)

Fusion du résultat (C2)

(D) Ecrire le résultat avec une tabulation

Module « Paradigmes de Programmation pour le Calcul Scientifique » universite paris-sACLAY 30/01/2026

LCUL
\UTE

wwms Estimation des colts, apport HPC

{ULATION

Etape | Estimation
LOC

A 10 2 JH
B1 20

B2 5

C1 30

Cc2 5

D 15

1 JH : écrire 'EB / SFD / Recette
2 JH : écrire le code et test (85 LOC > 1J travail)

Module « Paradigmes de Programmation pour le Calcul Scientifique » universite paris-sACLAY 30/01/2026

i Estimation des colts

Etape | Estimation
LOC

A 10 1 JH
B 20

C 5

D 15

1 JH : écrire 'EB / SFD / Recette
1 JH : écrire le code et test (50 LOC)

Les étapes B et C peuvent étre abstraites en POO — peut-étre que I'on va doubler le code de
BetC.

Bénéfice POO : facile si c’est en mode « dent creuse » sinon, comme article JANUS.
=>» PB lisibilité du gain et de I'anticipation (qui paye I'investissement?)

30/01/2026

Module « Paradigmes de Programmation pour le Calcul Scientifique » universite paris-sACLAY

- e \/ision HPC - MPI

ULATION

SFD : - en C++
(A) Ouvrir le fichier

(B1) Lire le fichier et convettir les valeurs (avec vérification si c’est un nombre) —
fermer le fichier

(B2)Initialiser les noeuds MPI

Distribuer le tri MPI (C1)

Fusion du résultat (C2)

(D) Ecrire le résultat avec une tabulation

Module « Paradigmes de Programmation pour le Calcul Scientifique » universite paris-sACLAY 30/01/2026

LCUL

s Estimation des colts, apport HPC

{ULATION

Etape | Estimation
LOC

A 10 2 JH
B1 20

B2 5

C1 30

Cc2 5

D 15

1 JH : écrire 'EB / SFD / Recette
2 JH : écrire le code et test (85 LOC > 1J travail)

Module « Paradigmes de Programmation pour le Calcul Scientifique » universite paris-sACLAY 30/01/2026

S, CALCUL
Bl HAUTE

@iz -RFORMAN

{ULATION

Chiffrer/Deviser

EB : écrire un programme qui fait le tri d'1 fichier ascii avec 2 colonnes -
séparateur tabulation - trier la valeur de la premiére colonne qui est un
nom de 5 caractéres. Le résultat est un fichier.

SFD : -en C

(A) Quvrir le fichier

(B) Lire le fichier et convertir les valeurs texte (avec vérification si c’est un nom de 5
caractéres) — fermer le fichier

(C) Faire un tri
(D) Ecrire le résultat avec une tabulation

Module « Paradigmes de Programmation pour le Calcul Scientifique » universite paris-sACLAY 30/01/2026

s TD Estimation des codts

Etape | Estimation
LOC

A 10 1 JH
B 20

C 5

D 15

1 JH : écrire 'EB / SFD / Recette
1 JH : écrire le code et test (50 LOC)

Les étapes B et C peuvent étre abstraites en POO — peut-étre que |'on va doubler le code de
BetC.

Bénéfice POO : facile si c’est en mode « dent creuse » sinon, qui paye?
=>» PB lisibilité du gain et de I'investissement

Module « Paradigmes de Programmation pour le Calcul Scientifique » universite paris-sACLAY 30/01/2026

%, caLcuL
(%6 HAUTE
\ »'{iﬁ'y RFORMAN

{ULATION

Bonne Pratique

1 : utiliser un tableau (exemple joint)
2 : afficher les mois = permet de recoller les jalons

M1 M2 M3 Durée JH Duree x Cout JH Cout JH
DEV1 19 20 20 59 19470 330
DEV2 0 20 20 40 13200
Durée Total 99
Cout en JH 32 670,00 €
34 303,50 € 5% contingence
Cout
interne 38 419,92 € 12%garantie
Prix client 54 885,60 € 30% marge

Module « Paradigmes de Programmation pour le Calcul Scientifique » universite paris-sACLAY 30/01/2026

g .CUL
g\ HAUTE

=W TDS — pour dimanche 8 février 2026, 23h59

JLATIO}

| s‘agit de chiffrer le cout du projet cuicui [document cuicui.pdf)

Vous partez de I'EB, de la SFD et des diagrammes présentés dans le document.
Vous estimez le nombre de LOC en C++ & le temps pour les TESTS

Vous estimez les JH pour une équipe de 2 DEV — mois a 20JH

A la fin, je vous demande un prix. A rendre le tableau XLS — dans le fichier les infos
pertinentes.

La synthése du prix et vos prompts dans un document PDF.

Module « Paradigmes de Programmation pour le Calcul Scientifique » universite paris-sACLAY 30/01/2026

LCUL
WTE
RFORMAN

{ULATION

Les 23 patterns :

Les patrons / patterns en Golang

Creational Structural Behavioral
Interpreter
Class Factory Method Adapter (class)
Template Method
) Chain of
Abstract Factory Adapter (object) R i
Builder Bridge Command
Prototype Composite Iterator
_ Decorator Mediator
Object
Facade Memento
_ Flyweight Observer
Singleton
State
Proxy Strategy
Visitor

Le fichier PPCS-CM8-2025/23pattern-go/23pattern-go.go donne les exemples d’invocation

Module « Paradigmes de Programmation pour le Calcul Scientifique »

universite PARIS-SACLAY

30/01/2026

- (39 Structural / Facade

nterface de sous-systéme simplifiée

nttps://godbolt.org/z/oWTWTaPc3

orivate:
SubSysteml *subsysteml;
SubSystem2 *subsystem2;
SubSystem3 *subsystem3;
SubSystemd4 *subsystem4;
}s
int main() { ©) Facade Facade 7

Type: Structural
O subsysteml Masque la complexité - et uniformise I'accés

Facade -Facade 5) | (B T Sl a des sous-systémes avec une approche

| O subsystem3

O subsystemd simplifiee.

facade.operationWrapper(); ~ e~

o i kY o
} / cﬂnplex 5y5te\g \
©5ubsy5tem4 ©5ub5y5tem3 @SUbsystemE @Subsysteml

Module « Paradigmes de Programmation pour le Calcul Scientifique » universite paris-sACLAY 30/01/2026

https://godbolt.org/z/oWTWTaPc3

A CUL
%% () HAUTE

N RFORMAN
w ULATIORN

Creational / Singleton

Classe qui ne donne qu'une seule instance
hitps://godbolt.org/z/5916 McbEZz

int main(int argc, char* argv[]) {

Singleton *singleton = Singleton::Instance();
singleton->checkSingleton();

//we create a new singleton2 but...

Singleton *singleton2 = Singleton::Instance();
singleton2->checkSingleton();

}
@ Singleton Singleton
Type: Creational
O static unigue_instance Classe qui ne peut avoir qu'une seule instance
@ static Instance() et qui donne une point d'accés global.

Module « Paradigmes de Programmation pour le Calcul Scientifique » universite paris-sACLAY 30/01/2026

https://godbolt.org/z/5916Mc6Ez

== W | es 23 patterns en Go

// C I’e a.t| O f al package pattern

/[1. Singleton Pattern -- une seule instance et fournir un point d'accés global a cette instance
type singleton struct {
Data string

var (
instance *singleton
once sync.Once

func Getlnstance() *singleton {
once.Do(func() {
instance = &singleton{Data: "I am singleton"}
1

return instance

Module « Paradigmes de Programmation pour le Calcul Scientifique » universite paris-sACLAY 30/01/2026

= (WM | es 23 patterns en Go

/ / cre a.t| on al package pattern

/I 2. Factory Method Pattern -- interface pour la création d'un objet, mais laisse aux sous-classes le choix des classes concrétes @ instancier
type Animal interface {

Speak() string
}

type Dog struct{}
type Cat struct{}

func (d *Dog) Speak() string { return "Woof!" }
func (c *Cat) Speak() string { return "Meow!" }

func CreateAnimal(animalType string) Animal {
switch animalType {
case "dog":
return &Dog{}
case "cat".
return &Catf{}
default:
return nil
}

Module « Paradigmes de Programmation pour le Calcul Scientifique » universite paris-sACLAY 30/01/2026

-t g .CUL
s (L HAUTE

W<&izg " “RFORMAN
- ULATIOM

Les 23 patterns en Go

// C I’e a.t| O f al package pattern

/Il 3. Abstract Factory Pattern -- définit une famille de classes interchangeables sans spécifier leur classe concréte
type Button interface {

Paint()
}

type WinButton struct{}
type MacButton struct{}

func (w *WinButton) Paint() { printin("Windows button") }
func (m *MacButton) Paint() { printin("Mac button") }

type GUIFactory interface {
CreateButton() Button
}

type WinFactory struct{}
type MacFactory struct{}

func (w *WinFactory) CreateButton() Button { return &WinButton{} }
func (m *MacFactory) CreateButton() Button { return &MacButton{} }

Module « Paradigmes de Programmation pour le Calcul Scientifique » universite paris-sACLAY 30/01/2026

g CUL
Bl HAUTE

e "RFORMAN
\&;? ULATION

\

%

Les 23 patterns en Go

[l creational package patter

/[4. Builder Pattern -- composite avec structure indépendante
type House struct {

WL

Windows int
Doors int
Roof string

}

type HouseBuilder struct {
house *House }

func NewHouseBuilder() *HouseBuilder {
return &HouseBuilder{house: &House{}} }

func (b *HouseBuilder) SetWindows(count int) *HouseBuilder {
b.house.Windows = count
return b }

func (b *HouseBuilder) SetDoors(count int) *HouseBuilder {
b.house.Doors = count
return b }

func (b *HouseBuilder) SetRoof(style string) *HouseBuilder {
b.house.Roof = style
return b }

func (b *HouseBuilder) Build() *House {
return b.house }}

Module « Paradigmes de Programmation pour le Calcul Scientifique » universite paris-sACLAY 30/01/2026

%, caLcuL
(%6 HAUTE
P »'{iﬁ'y RFORMAN

{ULATION

Les 23 patterns en Go

/ / cre at| on a.l package pattern

/I 5. Prototype Pattern -- le constructeur de copie fait l'instanciation
type Prototype interface {

Clone() Prototype
}

type ConcretePrototype struct {

Name string
func (p *ConcretePrototype) Clone() Prototype { © dient Prototype
t &C t P t N O N O private_prototype ;gg:f:ieclrgztlle?:na;r un constructeur nommeé 'Prototype’
return oncreterro Otype{ ame. p' ame} 8 Eﬁ;irtﬂcol?npeeigpmtotype *pl et instanciejdefobjets a traver le clonage du prototl;pe.
Y
@Pmmtype
clonef)
@ConcretePrototypel @ ConcretePrototype2
@ clone() @ clone()

Module « Paradigmes de Programmation pour le Calcul Scientifique » universite paris-sACLAY 30/01/2026

LCUL

o Structural / Adapter

Convertir l'interface d'une classe
https://godbolt.org/z/xj6reoaGd

Adapter &
_ Type: Structural
@AdEPfEf | : @ Client Réalise une conversion compatible avec
operation) o do_diient operation() les attentes du client. La conversion
— — des interfaces est réalisée a l'instanciation
des objets.
_r—‘ﬂ_ﬂ___. T

@ ConcreteAdapter

_ @ Adaptee2 @ Adapteel
m ConcreteAdapter(in Adapteel) - -
B ConcreteAdapter{in Adaptee2) @ Adaptee2Bizarre() g ?d:g;cgg&i?lzarren
@ operation() P

Module « Paradigmes de Programmation pour le Calcul Scientifique » universite paris-sACLAY

30/01/2026

https://godbolt.org/z/xj6reoaGd

L.CUL
JTE

wm | es 23 patterns en Go

!LATIO*

/ | StFUC u ra. package pattern

https://go.dev/play/p/oQD5kyde2yT
/I 6. Adapter Pattern -- crée une interface pour plusieurs sous-systemes de rﬁamerge ace qup||s }I)wssem mTerglglr deymanlere interchangeable

type LegacyPrinter interface {
Print(s string) string
}

type MyLegacyPrinter struct{}

func (p *MyLegacyPrinter) Print(s string) string {
return fmt.Sprintf("Legacy: %s", s) }

type ModernPrinter interface {
PrintModern(s string) string }

type PrinterAdapter struct {
OldPrinter LegacyPrinter }

func (p *PrinterAdapter) PrintModern(s string) string {
return p.OldPrinter.Print(s)

Adapter
0 . . i Ty::_s: Igtl:rl,u:tural _ _
adapter := &PrinterAdapter{OldPrinter: &Myl egacyPrinter{}} @ Adzpter @ cier Réalise une conversion compatible avec
5 - : les attentes du client. La conversion
gperation() ® da_dlient_opi=ratiani des interfaces est réalisée a l'instanciation

des objets.

@ ConcreteAdapter

@ AdapteeZ @ Adapteel

@ AdapteelBizarre()
@ operation()

L 4

m ConcreteAdapteriin Adapteel)
B ConcreteAdapteriin Adaptee2) @ Adaptee2Bizarre()
@ operation()

Module « Paradigmes de Programmation pour le Calcul Scientifique » universite paris-sACLAY 30/01/2026

g@ 19 | es 23 patterns en Go

[l structural package pattem

/[7. Bridge Pattern -- découplage

type DrawAPI interface {
DrawCircle(x, y, radius int)

}

type RedCircle struct{}
type GreenCircle struct{}

func (r *RedCircle) DrawCircle(x, y, radius int) {
fmt.Printf("Drawing red circle at (%d,%d) radius %d\n", X, y, radius)
}

func (g *GreenCircle) DrawCircle(x, y, radius int) {
fmt.Printf("Drawing green circle at (%d,%d) radius %d\n", x, y, radius)

}
type Circle struct {
api DrawAPI
X, Y, Radius int
}

func (c *Circle) SetAPI(api DrawAPI) { c.api = api }
func (c *Circle) Draw() { c.api.DrawCircle(c.X, c.Y, c.Radius) }

Module « Paradigmes de Programmation pour le Calcul Scientifique » universite paris-sACLAY 30/01/2026

LCUL

{ULATION

// structural package pattem

/[8. Composite Pattern -- structure arborescente/uniforme
type Component interface {

Operation() string
}

type Leaf struct {
Name string
}

func (I *Leaf) Operation() string { return .Name }
type Composite struct {

children [[Component
}

func (c *Composite) Add(child Component) {
c.children = append(c.children, child)
}

func (c *Composite) Operation() string {
result := "Branch("
for i, child := range c.children {
result += child.Operation()
if i < len(c.children)-1 {
result +=", "

www es 23 patterns en Go

@ Component

O m_name

operation()

add(in ¢ : Composite)()
remove(in c . Composite)
getChild{in i : int)
Enumeratei:l

Composite

Type: Structural

Assemblage d'objets dans une structure
arborescente, l'idée est de banaliser
I'acceés - unitaire ou de groupe d'objet.

@ Leaf

@ Cumpumte

O private_children vectar

O privage_id

@ operation()
@ enumerate()

@ operation()

@ add(in c : Compaosite)()

@ remove(in c: Composite)
@ getChildiin i : int)

@ enumerate()

Module « Paradigmes de Programmation pour le Calcul Scientifique »

universite PARIS-SACLAY

30/01/2026

g .CUL
5 b HAUTE
NS 74 RFORMAN

Les 23 patterns en Go

/ / Stru C’[U I’a| package pattern

// 9. Decorator Pattern -- attache des responsabilités supplémentaires & un objet de maniére dynamique
type Coffee interface {

Cost() int

Description() string

L g ULATIO}

}
type SimpleCoffee struct{}

func (s *SimpleCoffee) Cost() int {return 5}
func (s *SimpleCoffee) Description() string { return "Simple coffee" }

type MilkDecorator struct {
Coffee Coffee
}

func (m *MilkDecorator) Cost() int { return m.Coffee.Cost() + 2 }
func (m *MilkDecorator) Description() string { return m.Coffee.Description() + ", milk" }

Module « Paradigmes de Programmation pour le Calcul Scientifique » universite paris-sACLAY 30/01/2026

5 W |_es 23 patterns en Go
¥ 4 ULATIO}

/ / Stru C'[U I'a| package pattern

/[10. Facade Pattern -- regroupe plusieurs interfaces en une seule interface
type SubsystemA struct{}
func (s *SubsystemA) OperationA() string { return "SubA" }

type SubsystemB struct{}
func (s *SubsystemB) OperationB() string { return "SubB" }

type Facade struct {
a *SubsystemA
b *SUbSYStemB @ Facade i:;i?ztructural
} O subsysteml Masque la complexité - et uniformise 'accés
o g :Ezi:mg a des sous-systémes avec une approche
func NewFacade() *Facade { |0 subsystema | [simplifie.
return &Facade{&SubsystemA({}, &SubsystemB{}} _ i —
} / I:Bfnplex syste\g \

©Subsy5tem4 @Subsystem3 ©Subsy5tem2 @Subsysteml

func (f *Facade) Operation() string {
return f.a.OperationA() + " + " + f.b.OperationB()
}

Module « Paradigmes de Programmation pour le Calcul Scientifique » universite paris-sACLAY 30/01/2026

‘ JTE

\
X »,@ RFORMAN

ULATION

Les 23 patterns en Go

/ / structu ral package pattern ©rymeighracioy @ ryweight]

O unordered_map | — Enregistre les objets dans une structure de données,

// 11. Flywelght Pattern L portoge de l'état g ﬁ;@ﬁfﬁ;;“’h’lﬂf, operation(in extrinsicState) E;F?:.ble de supporter un effectif vaste d'objet du méme
type CharacterFlyweight struct { 0

Char rune /
} I\ C) ConcreteFlyweight C JUnsharedConcreteFlyweight

\ 2
O intrinsicstate O allstate

type CharacterFactory Struct { @ operationiin extrinsicState) /O;peration[in extrinsicstate)

chars map[rune]*CharacterFlyweight _—
} -

@Client

func NewCharacterFactory() *CharacterFactory {
return &CharacterFactory{chars: make(map[rune]*CharacterFlyweight)}
}

func (f *CharacterFactory) GetCharacter(c rune) *CharacterFlyweight {
if _, ok := f.chars[c]; lok {
f.chars[c] = &CharacterFlyweight{Char: c}
}

return f.chars|c]

Module « Paradigmes de Programmation pour le Calcul Scientifique » universite paris-sACLAY 30/01/2026

-t g .CUL
e HAUTE
\{V/ RFORMAN
Q \f ULATIOM

Les 23 patterns en Go

/ / S'[I’U C’[U ral package pattern

// 12. Proxy Pattern -- effet miroir
type Subject interface {
Request() string
}
type RealSubject struct{}
func (s *RealSubject) Request() string { return "RealSubject active" }
type Proxy struct {
realSubject *RealSubject
}

func (p *Proxy) Request() string {
if p.realSubject == nil {
p.realSubject = &RealSubject{}
}

return "Proxy: " + p.realSubject.Request()

Module « Paradigmes de Programmation pour le Calcul Scientifique » universite paris-sACLAY 30/01/2026

g CUL
Bl HAUTE

WYe2 ©CRFORMAN
x&;[g ULATION

\

%

Les 23 patterns en Go

/ / b e h aV| O ral package pattern

// 13. Chain of Responsibility Pattern -- répond a une demande avec découplage
type Handler interface {

SetNext(handler Handler)

Handle(request string) string

WL

}

type BaseHandler struct {
next Handler
}

func (b *BaseHandler) SetNext(h Handler) { b.next = h }

type ConcreteHandler1 struct{ BaseHandler }

func (h *ConcreteHandler1) Handle(req string) string {
if req == "one" { return "Handled by 1" }
if h.next != nil { return h.next.Handle(req) }
return "Not handled"

}

type ConcreteHandler2 struct{ BaseHandler }

func (h *ConcreteHandler2) Handle(req string) string {
if req == "two" { return "Handled by 2" }
if h.next != nil { return h.next.Handle(req) }
return "Not handled"

Module « Paradigmes de Programmation pour le Calcul Scientifique » universite paris-sACLAY 30/01/2026

A CUL
%% () HAUTE

NN evo. CCRFORMAN
w ULATIOR

Les 23 patterns en Go

/ / be h aV| O I’a| package pattern

/l 14. Command Pattern -- encapsuler une requéte sous la forme d'un objet, permettant la paramétrisation des clients avec différentes requétes
type Command interface { Execute() string }

type Light struct{}
func (I *Light) On() string { return "Light On" }

type LightOnCommand struct { Light *Light }
func (c *LightOnCommand) Execute() string { return c.Light.On() }

Module « Paradigmes de Programmation pour le Calcul Scientifique » universite paris-sACLAY 30/01/2026

A CUL
#2550 HAUTE

iNz@ 2 ©CRNFORMAN
w ULATIOR

Les 23 patterns en Go

/ / be h aV| 0 ral package pattern

/[15. Interpreter Pattern -- grammaire dans l'objet

type Expression interface { Interpret() bool }

type TerminalExpression struct { Data string }

func (t *TerminalExpression) Interpret() bool { return len(t.Data) > 0 }

Module « Paradigmes de Programmation pour le Calcul Scientifique » universite paris-sACLAY 30/01/2026

g .CUL
g e HAUTE

N ©“RFORMAN
\a\.ﬁ’ ULATION

TN

Les 23 patterns en Go

/ / be h a.V| 0 ral package pattern

/[16. lterator Pattern -- se déplace sans connaitre le détail de I'implémentation
type Iterator interface {

HasNext() bool

Next() interface{}

}

type Collection struct { Iltems [Jinterface{} }

func (c *Collection) Createlterator() Iterator {
return &Collectionlterator{collection: c}

}

type Collectionlterator struct {
collection *Collection
index int
}
func (i *Collectionlterator) HasNext() bool { return i.index < len(i.collection.ltems) }
func (i *Collectionlterator) Next() interface{} {
item := i.collection.ltems][i.index]
i.index++
return item

Module « Paradigmes de Programmation pour le Calcul Scientifique » universite paris-sACLAY 30/01/2026

A LCUL

= W |es 23 patterns en Go

ULATION

/ / b e h avo FI al package pattern

/I 17. Mediator Pattern -- spécifie les interactions entre objets sans définir leurs classes concrétes
type Mediator interface { Notify(sender interface{}, event string) }

type ConcreteMediator struct {
c1 *Component1
}

func (m *ConcreteMediator) SetComponent1(c *Component1) { m.c1 =c}
func (m *ConcreteMediator) Notify(s interface{}, e string) {
fmt.Printf("Mediator: reacting to %s\n", e)

} . @ Colleague Mediator
©MEdlamr(informe O private_mediatar ;gf&:uBnEEE}gEradi encapsule les interactions
e Com Onent1 Struct Mediator Mediator add() 0 private 1d d'un ensemtjale g'ubjet. r'-'F'IJet en avant le
distribute() dMsg()
. . - 0 sendMsg -
funC (C *Component1) Trlgger() { C.Medlator.NOtlfY(C, "CI|Ck") } _,n'r:l receiveMsq() couplage leger par une invocation explicite.
n

||I T

C |ConcreteMediator
O @Cancretet:olleague

O vector_colleagues =

@ sendMsgl)
@ add() @ receiveMsg()
@ distribute()

Module « Paradigmes de Programmation pour le Calcul Scientifique » universite paris-sACLAY 30/01/2026

A CUL
%% () HAUTE

NN evo. CCRFORMAN
w ULATIOR

// be h aV| O ral package pattern

/ 18. Memento Pattern -- informations privées pour « backup » de 1 état

type Memento struct { State string }

type Originator struct { State string }

func (o *Originator) CreateMemento() *Memento { return &Memento{State: o.State} }
func (o *Originator) RestoreMemento(m *Memento) { 0.State = m.State }

Module « Paradigmes de Programmation pour le Calcul Scientifique » universite paris-sACLAY 30/01/2026

LCUL
UTE

{ULATION

e Behavioral / Observer

https://godbolt.org/z/gMKrsoY7M
Dépendance Publish-Subscribe, idée de queue

@ Subject

O vObserver : Vector

notifies

@ Observer

@ attach(in o : Observer) 0 #] ¢ update(s : Subject) : Context
@ detachiin o : Observer) . getState() : Int
@ notify() getld() : Int
getState()
setState() ﬁl
[
| ‘
@CnncretESUbject @ConcretEGbSEwer
observes]
O subjectState - Int O TRl EE e 3 T
@ update
@ getState() ® ggtStatiéi:I
@ setState() ® setState()

Module « Paradigmes de Programmation pour le Calcul Scientifique »

Observer

Type: Behavioral

Definit une relation un a plusieurs

pour realiser la mise a jour lors

d'un changement d'état. Tous les objets

dependants sont notifies automatiquement.

universite PARIS-SACLAY

30/01/2026

https://godbolt.org/z/qMKrsoY7M

S, CALCUL
Wger . HAUTE

N RFORMAN
w ULATIORN

// be h aV| O ral package pattern

@ Subject

O vObserver : Wector

@ Observer

- notifies o
@ attach(in o : Observer) 0¥ | ¢ update(s : Subject) : Context
@ detachiin o : Observer) ” getState() : Int
@ notify() getld() : Int
getState()
setState() ﬁ_‘
)
I|
| |
I:
@IConcreteSubject @Concreteobsewer
observes ;
O subjectState : Int iuhseiy e Stat e Ing
@ update
@ getState() ° ggtStat(é(J
o setstate() o setState()

Observer

Type: Behavioral

Définit une relation un a plusieurs

pour réaliser la mise a jour lors

d'un changement d'état. Tous les objets
dépendants sont notifiés automatiquement.

/l 19. Observer Pattern -- définit une dépendance entre objets afin qu'un changement de I'état d’un objet entraine une mise @ jour automatique

type Observer interface { Update(string) }
type Subject2 struct {

observers [J[Observer

state string

}

func (s *Subject2) Attach(o Observer) { s.observers = append(s.observers, o) }

func (s *Subject2) SetState(st string) {
s.state = st
for _, 0 := range s.observers { 0.Update(st) }

}

type ConcreteObserver struct{ ID int }

func (o *ConcreteObserver) Update(s string) { fmt.Printf("Observer %d: state is %s\n", 0.ID, s) }

Module « Paradigmes de Programmation pour le Calcul Scientifique »

universite PARIS-SACLAY

30/01/2026

ﬁ‘g‘!,’;ﬁ y .CUL
Zwer () HAUTE
'v,z; 78 RFORMAN

ULATIOR

// be h aV| O ral package pattern

/[20. State Pattern -- les états sont gérés par un handle

type State interface { Handle() string }

type Context struct { State State }

func (c *Context) Request() string { return c.State.Handle() }

type ConcreteStateA struct{}
func (s *ConcreteStateA) Handle() string { return "State A" }

}

Module « Paradigmes de Programmation pour le Calcul Scientifique » universite paris-sACLAY 30/01/2026

“wws Behavioral / Strategy

https://godbolt.org/z/zbakK3Wr5T

int main() {

Context context(new ConcreteStrategyB());

context.execute();
Strategy
Type: Behavioral
@Context Deafinit un algorithme, le rend
| Th T interchangeable et indépendant du client.
@ﬂrategy
@ execute()
@ ConcreteStrategyh @ ConcreteStrategyB
@ execute() @ execute()

Module « Paradigmes de Programmation pour le Calcul Scientifique » universite paris-sACLAY 30/01/2026

https://godbolt.org/z/zbaK3Wr5T

R g ~CUL
b 1 AUTE

ey RFORMAN
. &fﬁ {ULATION

Les 23 patterns en Go

Strateqgy
@Context Type: Behavioral

Deafinit un algorithme, le rend
interchangeable et indépendant du client.

/ / b e h a.Vl 0 ral package pattern (@)strategy

/[21. Strategy Pattern -- algorithme o execute()

type Strategy interface { Execute() string }

type ConcreteStrategyA struct{}

func (s *ConcreteStrategyA) Execute() string { return "Strategy A" } @ corcretestrategya © Concretesirateays
o execute() o execute()

type ContextStrat struct { Strategy Strategy }
func (c *ContextStrat) Execute() string { return c.Strategy.Execute() }

Module « Paradigmes de Programmation pour le Calcul Scientifique » universite paris-sACLAY 30/01/2026

g CUL
e HAUTE
NS g "~ “RFORMAN
R\Vig”

ULATIOR

Les 23 patterns en Go

// be h aV| 0 ral package pattern

/Il 22. Template Method Pattern -- squelette
type Workerlinterface interface {

Work() string
}

type TemplateWorker struct {
provider Workerlnterface
}

func NewWorker(p Workerlnterface) *TemplateWorker { return &TemplateWorker{provider: p} }
func (t *TemplateWorker) Execute() string {

return "Prep -> " + t.provider.Work() + " -> Clean"
}

type ConcreteWorker struct{}
func (w *ConcreteWorker) Work() string { return "Specific Task" }

Module « Paradigmes de Programmation pour le Calcul Scientifique » universite paris-sACLAY 30/01/2026

-t g .CUL
s (L HAUTE

W<&izg " “RFORMAN
- ULATIOM

Les 23 patterns en Go

/ / b e h a.V| 0 ral package pattern

/I 23. Visitor Pattern -- pas de modification de la classe
type Visitor interface {

VisitA(*ConcreteElementA)
}

type Element interface { Accept(Visitor) }

type ConcreteElementA struct{}
func (e *ConcreteElementA) Accept(v Visitor) { v.VisitA(e) }

type ConcreteVisitor struct{}
func (v *ConcreteVisitor) VisitA(e *ConcreteElementA) { fmt.Printin("Visited Element A") }

Module « Paradigmes de Programmation pour le Calcul Scientifique » universite paris-sACLAY 30/01/2026

