#7

23/01/2026
jean-michel.batto@cea.fr

https://gogs.eldarsoft.com/M2_IHPS

&
s
f
0
<
~

R ..‘/) \: &
E o
LN L
"

4
N

s |_es patrons / patterns

JLATIO!

Les 23 patterns :

Creational Structural Behavioral
@ @ Interpreter
Class Factory Method Adapter (class)
Template Method
Abstract Facto Adapter (object] 13 Chain of
Y P | Responsibility
14 Builder Bridge @ Command
Prototype Composite lterator
10 Decorator (23 Mediator
Object
11 Facade 12 Memenio
Flyweight Observer
Singleton
(20 State
Proxy Strategy
15 Visitor

Module « Paradigmes de Programmation pour le Calcul Scientifique » université pariIS-SACLAY 23/01/2026

.CUL

UTE
RFORMAN
ULATIO®
. . c e a . composition mélange de
Typologie = Nom du Design Pattern Ce qui doit étre ajuster verbe P 9
sous jacente classes?
Abstract Factory famille d'objets dépendants structure non
. Comment créer un objet composite dont la structure du .
Builder liste non

composite est indépendante
Sous classe d'un objet qui est instanciée sans connaitre la classe

Creational Factory Method o . .
ancétre (connaissance retardee)

filtrage vtab

Prototype Classe d'objet qui est instanciée grace a un constructeur de copie copie=verbe liste non
Singleton La seule instance d'une classe copie=o=verbe non
Adapter accede a un objet en modifiant l'interface non
Bridge Fait I'implémentation d'un objet par découplage découplage non
Composite structure et composition d'un objet vue de maniére uniforme arbre non
Structural Decorator Responsabilité d'un objet sans héritage - ajout dynamique filtrage vtab
Facade Exposer une interface a un sous-systéeme filtrage vtab
Flyweight cout de stockage d'un objet, partage de I'état état=verbe liste non
Comment un objet est accédé, son emplacement (mémoire,
Proxy . . queue non
disque) - effet miroir
Chain of Responsibility Un objet qui peut répondre a une demande avec découpplage découplage queue filtrage vtab
quand et comment une commande peut étre faite - la
Command . . structure non
commande devient un objet
Interpreter grammaire et interprétation d'un objet non
Iterator se déplacer dans une structure d'objet sans en connaitre le détail liste filtrage vtab
Mediator Comment et avec quels objets sont décrites les interactions non
Quelles sont les informations privées qui sont stockée a partet état
Behavioral Memento el état=verbe el non
Observer I'effectif des objets observés et quand s'effectue la mise a jour queue non
State les états d'un objet sont des variables, avec un handler() état=verbe structure filtrage vtab
Strategy un algorithme te)zten5|on=ver structure filtrage vtab
Template Method les étapes/squelette d'un algorithme structure non
Visitor les opérations élémentaires sont appliquées a un objet sans liste -

modifier sa classe

Module « Paradigmes de Programmation pour le Calcul Scientifique » universite paris-sACLAY 23/01/2026

UTE
-:RFORMAN(
{ULATION

Creational / Prototype

Création de nouveaux objets par copie d'un modéle
https://godbolt.org/z/M87PrKxrh

int main(int argc, char* argv[]) {

Client client;

client.setPrototype (new ConcretePrototypel) ;
Prototype *pl = client.client clone() ;
pl->checkPrototype () ;
client.setPrototype (new ConcretePrototype?2) ;

Prototype *p2 = client elient—eleonel() ;
Cliént Prototype
p2 —>checkPrototype () ’ O private prototype Type: Creational '
= Spécifie I'objet par un constructeur nommeé 'Prototype’
} @ setPrototype(Prototype *p) et instancie des objets a traver le clonage du prototype.
@ client_clone()

L 4
@met}rpe

<+ clone()

AN

@ ConcretePrototypel © ConcretePrototype2

@ clone() @ clone()

Module « Paradigmes de Programmation pour le Calcul Scientifique » universite paris-sACLAY 23/01/2026

https://godbolt.org/z/M87PrKxrh

LCUL

== WM Structural / Adapter

{ULATION

Convertir I'interface d'une classe
https://godbolt.org/z/xj6reocaGd

int main() {

Client client;

std: :cout << "new Adapteel" << std::endl;
ConcreteAdapter adpl (new Adapteel())
client.do client operation(adpl) ;

std: :cout << "new Adaptee2" << std::endl;
ConcreteAdapter adp2 (new Adaptee2())

client.do client operation (adp2) ; Adapter
- - _ Type: Structural
} @*""ﬂ’*?PtE‘f' | : @ Client Réalise une conversion compatible avec
& operation) o do_dient operation() les attentes du client. La conversion
= = des interfaces est réalisee a l'instanciation
des objets.

ConcreteAdapter
@ @ Adaptee2 @ Adapteel
m ConcreteAdapteriin Adapteel)

B ConcreteAdapter(in Adaptee2) @ Adaptee2Bizare() g ::d:pm:cﬁgri:.i?lzarrei:l
@ operation() P

Y

Module « Paradigmes de Programmation pour le Calcul Scientifique » universite paris-sACLAY 23/01/2026

https://godbolt.org/z/xj6reoaGd

LCUL
AUTE

wms Structural / Composite

{ULATION

Représentation de hiérarchies d'objetfs vus de

maniére uniforme par le client
hitps://godbolt.org/z/00K67xeGg

int main() {

Composite composite;
composite.group ("principal") ;
for (unsigned int i = 0; i < 3; ++i) {

< operation()

< add{in c : Composite)()

o remove(in C: Composite)
< getChildiin i : int)

< enumerate()

Composite

Type: Structural

Assemblage d'objets dans une structure
arborescente, |''dée est de banaliser
I'accés - unitaire ou de groupe d'objet.

composite.add (new Leaf (1)) ; A
Composite composite2; ()(mmmmm

composite2.group ("secondaire") ; ()lfﬁ

O private_children vectar

composite.add (&composite2) ; O privage_id

@ operation()

composite.remove (0) ; o enumerate()

composite.operation() ;

Component *componentl = composite.getChild(0) ;
componentl->operation () ;

Component *component2 = composite.getChild(3) ;
component2->operation() ;

composite.enumerate() ;

@ operation()

@ add{in c: Composite)()

@ remove(in c: Composite)
@ getChild(in i : int)

@ enumerate()

Module « Paradigmes de Programmation pour le Calcul Scientifique » universite paris-sACLAY

23/01/2026

https://godbolt.org/z/ooK67xeGq

=9 Structural / Flyweight

Partager I'état extrinséque - factorisation
hitps://godbolt.org/z/xEIWhT7zc

@:)FIj-,»".-.u:aightFactmr’yr Flyweight
@ Flyweight Type: Structural
O unordered_map Me— Enregistre les objets dans une structure de données,
@ getFlyweight() operation(in extrinsicState) capable de supporter un effectif vaste d'objet du meme
@ listFlyweights() type.
K
|
III
@ ConcreteFlyweight @L.ln5harEdCcncreteFlyweight
O intrinsicState O allState
@ operation{in extrinsicState) @ operation({in extrinsicstate)

@Client

Module « Paradigmes de Programmation pour le Calcul Scientifique » universite paris-sACLAY 23/01/2026

https://godbolt.org/z/xEfWhT7zc

LCUL

- (5= 9 Structural / Proxy

{ULATION

Objet miroir d'un autre objet plus lointain
https://godbolt.org/z/cTbP35sd4

) Proxy
®5UbjE'L'f @ ci Type: Structural
s Encapsule un objet - en mode mirroir et
request() respecte le méme contrat que celui-ci.

: Prox
@RealSubject représentation de @ ¥
< O private_subject
@ request()
@ request()

Module « Paradigmes de Programmation pour le Calcul Scientifique » universite paris-sACLAY 23/01/2026

https://godbolt.org/z/cTbP35sd4

=98 Behavorial / Interpreter

Décrit un interpreteur — utile pour un moteur d'état
https://godbolt.org/z/0es9MIbbT

@ Context
Interpreter
O token @ . Type: Behavioral
O private_map Client Permet de décrire une grammaire pour un
@ set(in token, in bool) langage et d'instancier son interpreteur.
@ getiin token) : bool
) 4
@ AbstractExpression
interpret()
4_., 1
| l
@TerminalExprEEEian @NuntermmalExpressmn

O private_AbstractExpl

ol e il O private_AbstractExp2

@ interpret() : Context

@ interpret() : Context

Module « Paradigmes de Programmation pour le Calcul Scientifique » universite paris-sACLAY 23/01/2026

https://godbolt.org/z/oes9M9bbT

=9 Behavorial / Command

Range une commande dans un objet, découple le client du fournisseur
https://godbolt.org/z/GMcKodP9G

@ Invoker T]
Receiver . i
@ O private_command Type: Behavioral .
@ action) = Encapsule une commande dans un objet,
@ setCommandi) découple le client du fournisseur.
@ executeCommand()

@Ccncretet:ummand @C d
omiman
O private_receiver —
execute()
@ execute()

Module « Paradigmes de Programmation pour le Calcul Scientifique » universite paris-sACLAY 23/01/2026

https://godbolt.org/z/GMcKodP9G

LCUL
UTE

{ULATION

e Behavorial / Mediator

Permet le couplage |éger
https://godbolt.org/z/05Eneo1sG

@ Colleague

Mediator

Type: Behavioral

Décrit un objet qui encapsule les interactions
d'un ensemble d'objet. Met en avant le
couplage leger par une invocation explicite.

Mediator| -

@ L informe O private_mediator
add() O private_id
distribute() sendMsg()

’Ir\ receiveMsg()

_Il Z‘:

| |
@CancretEMEdiatar
@ConcreteCDlleague

O vector colleagues

- @ sendMsgl)
@ add() @ receiveMsg()
@ distribute()

Module « Paradigmes de Programmation pour le Calcul Scientifique »

universite PARIS-SACLAY 23/01/2026

https://godbolt.org/z/o5Eneo1sG

=W Comment appliquer les 23 patterns?

Biblio=»Exploring Game Architecture Best-Practices 2011.pdf
https://doi.org/10.1145/1984674.1984682

Exploring Game Architecture Best-Practices with Classic Space Invaders
- 201

=>Quels sont les pattemns utiles d'aprés 'article?

Module « Paradigmes de Programmation pour le Calcul Scientifique » universite paris-sACLAY 23/01/2026

https://doi.org/10.1145/1984674.1984682

8. CALCUL
(%" HAUTE

“@7 ¢ PERFORMAN
\j ULATION

Quelques patterns & connaitre
Singleton
Observer
Strategy
Adapter
Facade

Module « Paradigmes de Programmation pour le Calcul Scientifique » universite paris-sACLAY 23/01/2026

A CUL
%% () HAUTE

N RFORMAN
w ULATIORN

Creational / Singleton

Classe qui ne donne qu'une seule instance
hitps://godbolt.org/z/5916 McbEZz

int main(int argc, char* argv[]) {

Singleton *singleton = Singleton::Instance();
singleton->checkSingleton();

//we create a new singleton2 but...

Singleton *singleton2 = Singleton::Instance();
singleton2->checkSingleton();

}
@ Singleton Singleton
Type: Creational
O static unigue_instance Classe qui ne peut avoir qu'une seule instance
@ static Instance() et qui donne une point d'accés global.

Module « Paradigmes de Programmation pour le Calcul Scientifique » universite paris-sACLAY 23/01/2026

https://godbolt.org/z/5916Mc6Ez

LCUL
UTE

{ULATION

e Behavioral / Observer

https://godbolt.org/z/gMKrsoY7M
Dépendance Publish-Subscribe, idée de queue

@ Subject

O vObserver : Vector

notifies

@ Observer

@ attach(in o : Observer) 0 #] ¢ update(s : Subject) : Context
@ detachiin o : Observer) . getState() : Int
@ notify() getld() : Int
getState()
setState() ﬁl
[
| ‘
@CnncretESUbject @ConcretEGbSEwer
observes]
O subjectState - Int O TRl EE e 3 T
@ update
@ getState() ® ggtStatiéi:I
@ setState() ® setState()

Module « Paradigmes de Programmation pour le Calcul Scientifique »

Observer

Type: Behavioral

Definit une relation un a plusieurs

pour realiser la mise a jour lors

d'un changement d'état. Tous les objets

dependants sont notifies automatiquement.

universite PARIS-SACLAY

23/01/2026

https://godbolt.org/z/qMKrsoY7M

“wws Behavioral / Strategy

https://godbolt.org/z/zbakK3Wr5T

int main() {

Context context(new ConcreteStrategyB());

context.execute();
Strategy
Type: Behavioral
@Context Deafinit un algorithme, le rend
| Th T interchangeable et indépendant du client.
@ﬂrategy
@ execute()
@ ConcreteStrategyh @ ConcreteStrategyB
@ execute() @ execute()

Module « Paradigmes de Programmation pour le Calcul Scientifique » universite paris-sACLAY 23/01/2026

https://godbolt.org/z/zbaK3Wr5T

LCUL

o Structural / Adapter

Convertir l'interface d'une classe
https://godbolt.org/z/xj6reoaGd

Adapter &
_ Type: Structural
@AdEPfEf | : @ Client Réalise une conversion compatible avec
operation) o do_diient operation() les attentes du client. La conversion
— — des interfaces est réalisée a l'instanciation
des objets.
_r—‘ﬂ_ﬂ___. T

@ ConcreteAdapter

_ @ Adaptee2 @ Adapteel
m ConcreteAdapter(in Adapteel) - -
B ConcreteAdapter{in Adaptee2) @ Adaptee2Bizarre() g ?d:g;cgg&i?lzarren
@ operation() P

Module « Paradigmes de Programmation pour le Calcul Scientifique » universite paris-sACLAY

23/01/2026

https://godbolt.org/z/xj6reoaGd

- (39 Structural / Facade

nterface de sous-systéme simplifiée

nttps://godbolt.org/z/oWTWTaPc3

orivate:
SubSysteml *subsysteml;
SubSystem2 *subsystem2;
SubSystem3 *subsystem3;
SubSystemd4 *subsystem4;
}s
int main() { ©) Facade Facade 7

Type: Structural
O subsysteml Masque la complexité - et uniformise I'accés

Facade -Facade 5) | (B T Sl a des sous-systémes avec une approche

| O subsystem3

O subsystemd simplifiee.

facade.operationWrapper(); ~ e~

o i kY o
} / cﬂnplex 5y5te\g \
©5ubsy5tem4 ©5ub5y5tem3 @SUbsystemE @Subsysteml

Module « Paradigmes de Programmation pour le Calcul Scientifique » universite paris-sACLAY 23/01/2026

https://godbolt.org/z/oWTWTaPc3

Cycle de vie du code

Build
SFD - Receftte

Livraisons Dev / Préprod / Prod
Run
PRA
MCO
MCS

Module « Paradigmes de Programmation pour le Calcul Scientifique » universite paris-sACLAY 23/01/2026

E & LCUL
. HAUTE

RFORMAN(
{ULATION

Codage et bonnes pratiques

Penser sa communication (comment partager ses idées d'architecture)
Organiser son code / Organisation fonctionnelle

Stocker ses données

Organiser ses données

Technigues de mise en cache

Patrons de conception cloud

Configurations du code

Observabilité / Journalisation / Log / Traces

Cocomo

Chiffrage / Devisage

Module « Paradigmes de Programmation pour le Calcul Scientifique » universite paris-sACLAY 23/01/2026

P a LCUL

e | a repreésentation d’architecture C4

le modele C4 est une fechnique de modélisation graphique allégée pour les architectures logicielles, basée
sur une décomposition hiérarchique en quatre niveaux : contexte, conteneurs, composants et code.

C4 Model

Level 1 Level 2 Level 3 Level 4
CONTEXT CONTAINER COMPONENT CODE
. Application
. Micro Mabile ‘2 RES_T RPC
USER services App e) Api 3 GitHub GitHub
- < 0
system(s) 200Min _— Sl . A 200M in ETL/ELT Warehouse 100Min)
, -— N GitHub
Internal And gy Datsbase Cache
External
=0
%i Fx <[>
Application Application Warshouse| | Developer UML = Conﬁg
AUDIENCE AUDIENCE AUDIENCE AUDIENCE
OJ « S 9. w Y . Y o 8
Business Analyst Product Architect Designer Product Architect Developer (

QA Developer Designer
Module « Paradigmes de Programmation pour le Calcul Scientifique »

universite PARIS-SACLAY

23/01/2026

f;;;?g@,, LCUL
‘ f»aga \UTE

NS CERFORMAN
{ULATION

Organiser son code

Organisation ses répertoires:
Avoir une régle de nommage
Eviter les déséquilibres
Identifier les tests et la documentation
Penser & limpact de 'arborescence dans le git

Bonnes pratiques de créations de paquets

Organisation fonctionnelle : le modéle hexagonal

Module « Paradigmes de Programmation pour le Calcul Scientifique » universite paris-sACLAY 23/01/2026

DFORMAN
{ULATION

Bonnes pratiques de créations de paquets

Organiser en paquets nommeés par le service rendu, pas le contenu
Publier le strict minimum nécessaire aux utilisateurs

Privilégier la simplicité d’API a la multiplicité de réglages nécessaires
-ournir des erreurs typées et documentées

Prévoir une version des paquets pour ['utilisation concurrente — avec un nom
type HPC.

Mettre un fichier README.md par paquet, avec une date de mise en
développement, les auteurs éventuels, et une explication de l'usage du
paquet.

Module « Paradigmes de Programmation pour le Calcul Scientifique » universite paris-sACLAY 23/01/2026

* e Organisation fonctionnelle, le modéle hexagonal

{ULATION

La vision hexagonale - le « main » est au centre
Application

événements g
‘main’

@ Stockage
paramétrages | | queue

Module « Paradigmes de Programmation pour le Calcul Scientifique » universite paris-sACLAY 23/01/2026

Pat g cuL

B SE A

el HAUTE

W@z ©-RFORMAN
ULATION

Principes SOLID (acronyme de 2004
Single responsibility
Une classe ne s'occupe que d'1 chose @ la fois

Open—closed
Héritage, composition =» ajout mais pas de retrait, et mécanisme de protection

Liskov substitution
Un type spécialisé (heritagel doit pouvoir remplacer un type ancétre

Interface segregation
Un objet de depend pas d'une interface qui ne le concerne pas

Dependency inversion

Vision hexagonale (l'objet le plus conceptuel ne connait pas le detail de 'objet
concret), tout est passé par l'interface, pas de surcharge de classe concrete

Module « Paradigmes de Programmation pour le Calcul Scientifique » universite paris-sACLAY 23/01/2026

https://en.wikipedia.org/wiki/Single-responsibility_principle
https://en.wikipedia.org/wiki/Open%E2%80%93closed_principle
https://en.wikipedia.org/wiki/Liskov_substitution_principle
https://en.wikipedia.org/wiki/Interface_segregation_principle
https://en.wikipedia.org/wiki/Dependency_inversion_principle

LCUL

2l HAUTE

7@ "ERFORMANC
IMULATION

Organisation fonctionnelle, le modele hexagonal

Le modéle hexagonal préfigure |'architecture par
microservice

Abstraction

Logique métier

Application

Adaptateur

' Stockage

queue

2005, Alistair Cockburn https://alistair.cockburn.us/hexagonal-architecture/
http://wiki.c2.com/?HexagonalArchitecture

23/01/2026

Module « Paradigmes de Programmation pour le Calcul Scientifique » universite paris-sACLAY

https://alistair.cockburn.us/hexagonal-architecture/
http://wiki.c2.com/?HexagonalArchitecture

Tt LCUL
[il HAUTE

RFORMAN(
{ULATION

Organisation fonctionnelle, le modéle hexagonal

Les couches externes importent les couches internes, jamais le contraire

Chaque couche définit ses points d’intégration, dits “port”, sous formes de
types/classe — qui vont permetire la mise en place d'objets de service.

On sépare les paquets.
pour les consommateurs — avec le point d’'exposition (par ex. http)
pour les fournisseurs — avec la session (exemple: database/sqgl/driver)

Chaque couche peut se composer de plusieurs paquets, en particulier
les hexagones

Un paquet ne fournit jamais plusieurs couches ou adaptateurs

Module « Paradigmes de Programmation pour le Calcul Scientifique » universite paris-sACLAY 23/01/2026

g s, caiLCUL
"l HAUTE
RFORMAN(
{ULATION

Le stockage est défini par la logique intrinséque des données (dafa-driven)
Les autres stockages sont définis par les usages (query-driven)

On sépare les serices avec un mode CQRS =
Command Query Responsibility Segregation

Par ex:
service d'acquisition et modification: intégrité, cohérence, normalisation
services de restitution: performance, scalabilité = dénormalisation
service de fransformation: passer de I'un & I'autre, streaming

Event Sourcing: la source d'autorité est le flux d'événements complets multi-
services

Module « Paradigmes de Programmation pour le Calcul Scientifique » universite paris-sACLAY 23/01/2026

UTE
-:RFORMAN(
{ULATION

Données structurées (SQL)

les modéles de données sont transactionnelles. = moniteur transactionnel

Lla donnée est décrite & travers une relation et une entité (E/R) — avec des formes
normales pour décrire les relations (Boyce-Codd formes normales).

1NF: tous les attributs de toute relation, ayant par définition une clé, sont atomiques
lisolés)

pas de listes, pas de NULL

une adresse peut éfre non atomique: numeéro, rue, code postal

2NF: la clef entiére peut étre un composite - une jointure. Aucun attribut n‘appartenant
pas 4 la clef ne dépend transitivement d'un sous ensemble de la clef — on obtient une
table étoile.

3NF: on factorise par rapport @ 2NF - il s‘agit de faire une table flocon.
Limitations:

Le principe de la normalisation n‘est pas associée a la performance
La normalisation permet de décrire les contraintes d'intégrités

Module « Paradigmes de Programmation pour le Calcul Scientifique » universite paris-sACLAY 23/01/2026

LCUL
WUTE
RFORMAN(
{ULATION

Données déstructurées (NoSQL)

Dans une base relationnelle (il y a un moniteur transactionnel)
ACID: Atomic updates, Consistency, Isolation, Durability

Des répliques en lecture contiennent des copies potentiellement non intégres, et foujours en (légerl

décalage avec la version de référence =» contrainte Causale prise en charge par le moniteur
fransactionnel

Dans une base non-relationnelle, généralement répartie, les répliques peuvent étre
foutes incohérentes, et c'est assumé

Avec les systémes de services indépendant, lintégrité est limitée d chaque service. Le
systéme global n'est plus que eventually consistent

Les efforts sont & porter sur la réduction de la fenétre d'incohérence =» contrainte Causale

Théoreme CAP de Brewer (Consistency / Availability / Partition tolerance): aucun systéme
réparti ne peut garantir & la fois pour tous ses noeuds la cohérence, la disponibilité, et la
résistance au partitionnement) https://en.wikipedia.org/wiki/CAP_theorem

Deux @ la fois sont possibles, choisir la solution selon la paire choisie

Module « Paradigmes de Programmation pour le Calcul Scientifique » universite paris-sACLAY 23/01/2026

https://en.wikipedia.org/wiki/CAP_theorem

- =W Configurations du code = décrit I'évolution

ULATION

Comment déployer des versions différentes de code simultanément ?
Feature flag (aka Feature Toggle): un mécanisme externe a I'application qui définit des variables lors
de I'exécution des requétes entrantes. A/B ou MVT (multivariant)

Composants:

Un stockage des régles de détermination des variables, voire une Ul
stockage des reégles de classement des requétes, de ['historique des évolutions, etc
activation/désactivation, politique de rollout
conservation des révisions, lien vers |'observabilité, documentation

Un proxy, interne ou externe, qui répartit les requétes en groupes, ajoutant des headers appropriés:
géociblage, authentification, tirage statistique, efc

Une bibliothéque qui détermine les flags actifs et la configuration de l'appli:
au démarrage, puis en cours de fonctionnement par sondage du stockage,
pour le support de la reconfiguration sans déploiement
L'application des configurations — modulaire et progressive : infemne, beta, puis rampe
jusqu’d 100%. Désactivation en cas de probléme.

hitps://martinfowlercom/articles/feature-toggles.html

Module « Paradigmes de Programmation pour le Calcul Scientifique » universite paris-sACLAY 23/01/2026

https://martinfowler.com/articles/feature-toggles.html

S LCUL
Al HAUTE

RFORMAN(
{ULATION

Les caches servent a limiter la consommation de ressources dans les
applications, pour les protéger et permetire leur scalabilité horizontale.
Caches de données

Hors application: dans la base de données, répliques en lecture pour décharger le
serveur d'écriture. Probléme: le retard de mise & jour.

Hors processus: serveurs dédiés: Memcached, Redis, AWS Elasticache
Résilience et scalabilité par sharding et réplication. Notion de hachage cohérent

En processus: cache statique
Filesystem : avoir une vision des accés aux fichiers (et décider ouU
mettre le cache applicatif)

| existe une hiérarchie des caches — on peut construire un benchmark
théorique (Amdahl).

Module « Paradigmes de Programmation pour le Calcul Scientifique » universite paris-sACLAY 23/01/2026

. \5 W Patron de conception Cloud : RPC

Débuts du calcul réparti: RPC — Remote Procedure Call
'appelant sérialise son message dans un format réseau
Le bibliothéque gére I'appel et la réception des résultats retour
Elle désérialise les résultats et revient, le tout synchrone
Peut étre explicite (RPC) ou transparent avec des stubs générés (Corbal

Avantage: concept frés simple, implémentations nombreuses: XMI-RPC, SOAP, JSON-
RPC

Problémes:

Compromis lisibilité (formats texte) vs performance (formats binaires)
Résistance aux pannes si centralisation du service?
Couplage fort entre appelant et appelé

Le choix actuel gRPC (car http/2). (google RPC)

hitps://app.swaggerhub.com =» équivalent fonctionnel de github pour la définition des
API/REST

Module « Paradigmes de Programmation pour le Calcul Scientifique » universite paris-sACLAY 23/01/2026

https://app.swaggerhub.com/

- 3wl Patron de conception Cloud : bus événementiel

{ULATION

Modéle adapté aux applications découplées, asynchrone

Chaque service publie des messages et n‘attend pas de réponse par défaut
Possibilité de surcouche implémentant un modéle requéte/réponse
Mais plus de modéle “fonction distante”

Chaque service s‘abonne (pub/subl & des files d'attente (des “sujets’) de son choix
Les formats de message sont définis extérieurement aux services, souvent en protobut

Gestion de la garantie de délivrance: at-least-once, at-most-once, exactly-once,
ordered

Les consommateurs ont plus ou moins de charge selon les garanties

Gestion de la tolérance aux pannes et de la persistance
Quelques files Apache Kafka, NATS, NSQ, RabbitMQ
Possible sans serveur séparé, avec ZeroMQ

Module « Paradigmes de Programmation pour le Calcul Scientifique » universite paris-sACLAY 23/01/2026

https://developers.google.com/protocol-buffers

L.CUL

-9 Patron de conception fonctionnelle

ULATION

Un micro-service est un service traitant un seul contexte borné au sens DDD (data
driven designl.

| est la source de vérité sur ses données

Lorsqu'il a des représentations de données d'autres contextes, la structure est la sienne

Intégration de micro-services

le paramétrage fin de la connectivité: IP, port, régles d'accés, etc, ne fait pas partie du “métier” d'un
service

Définir des paramétres HTTP par défaut, limités & une seule connexion

Associer au service un sidecar proxy qui sera le seul & communiquer avec lui, et aura tous les acces,
et sera en coupure avec I'extérieur

Le groupe de conteneurs (pod) associe les deux
L'orchestrateur (service mesh) agence les proxies sans connattre les applications
Il peut méme fournir le coupe-circuit (ct supral et un degré d'observabilité sans code applicatif

Module « Paradigmes de Programmation pour le Calcul Scientifique » universite paris-sACLAY 23/01/2026

42,7‘}' I OTE

- = 9w Observabilite

Les 4 piliers de I'observabilité
Journaux: enregistrer du texte avec des parameétres
Métriques: compter, mesurer, répartir des grandeurs
Traces: enregistrer une pile d'appels virtuelle au-travers de services multiples
Et un quatriéme: les alertes, transversales aux 3 autres.

Observabilité et supervision (monitoring)
La supervision vise @ observer des indicateurs d'un systéme, de toutes natures, avec
pour but d'en détecter les anomalies & partir de manifestations extérieures (ex. charge
CPU, espace disque saturé
“Qu’est-ce qui ne va pas ? // Cybersécurité
L'observabilité vise & identifier ['état d'un systéme pour comprendre la raison des
anomalies

Module « Paradigmes de Programmation pour le Calcul Scientifique » universite paris-sACLAY 23/01/2026

S LCUL
Al HAUTE

RFORMAN(
{ULATION

Journalisation

Déclenchement: lors d'un événement 2 grandes approches: texte
non structuré sur stdout ou stderr, typique des applications
conteneurisées en modéle 12-factor

journaux structurés, inspirés par syslog (REC 5424), au départ avec
des niveaux (severityl et catégories (facilifyl, depuis étendus avec
des étiquettes

Problémes liés & la journalisation:
Volume
Sérialisation
Données nominatives (RGPD)
Couplage de charge et rétropression
Cybersécurité

Module « Paradigmes de Programmation pour le Calcul Scientifique » universite paris-sACLAY 23/01/2026

https://12factor.net/fr/
https://www.rfc-editor.org/rfc/rfc5424.html

fa

A CUL

=W Les metriques

JLATIO!

i

N

Déclenchement: événementiel ou périodique
Dans les APl modernes (graphite, statsd), le code émet une donnée numérique (échantillon)
avec un chemin (ex. cpu.0.load) avec une valeur et des étiquettes

Le collecteur construit automatiquement les séries a partir des chemins

Dans les API plus anciennes, les séries doivent étre prédéfinies

3 principaux types de données:

Gauge: c'est un niveau. Le collecteur conserve un agrégat, généralement la demiére valeur
obtenue sur une période

Compteur: suite monotone pouvant seulement étre réinitialisée. Le collecteur conserve
normalement |la derniére valeur obtenue sur une période

Histogramme / distribution: c’est une valeur pour laquelle le collecteur conserve des séries
statistiques, pour extraire des agrégats: moyenne, médiane, mode, minimum, p95, p99, etc. Tous
les systémes ne supportent pas tous les agrégats

Module « Paradigmes de Programmation pour le Calcul Scientifique » université pARIS-SACLAY 23/01/2026

https://www.influxdata.com/time-series-platform/chronograf/

. cALCUL
5ol - AUTE

2d PERFORMAN
{ULATION

Les traces

Déclenchement sur requéte

Notion de span (=profiler=)
A l'entrée dans une période observable (une fonction), début d'une étendue (span)
A la sortie, fin de I'étendue et collecte de sa durée, et de données comme étiquettes (defen.

les étendues forment un arbre depuis une étendue racine
Les appels de fonction/méthode créent des enfants successifs
La propagation de I'étendue racine permet ef son inclusion dans les requétes sortantes
permet de créer une trace répartie dans une archi micro-services
Corrélation: injecter l'identification de |'étendue dans le logger et/ou le client de
métriques permet de corréler journaux, métriques, et fraces, pour I'observation Ia
plus utilisable

Module « Paradigmes de Programmation pour le Calcul Scientifique » universite paris-sACLAY 23/01/2026

S, ciLcuL
5l 1AUTE

Al |
® w\«j’? RFORMAN

ULATION

Le stockage des données d’observation

Les données temporelles de I'observabilité posent un probléme de montée
en charge dans les bases de données classiques:

La PK naturelle est la séquence temporelle ou l'incrément monotone des
enregistrements

= |les mises @ jour ont toujours lieu dans les mémes pages actives
= en cas de sharding, utilisation d'un seul shard
= contention de verrouillage et limitation des performances

Beaucoup plus d'écritures que de lectures
Besoin d'agrégation (rollup) des métriques, et pb d’'expiration des données (effacement
des anciennes observations)
Lles bases spécialisées sont optimisées — avec une capacité & gérer les
franches de temps:
TSD = Time Series DataBase

Outils libres: InfluxDB, Prometheus, Graphite, RRDtool, OpenTSDB, Druid, M3DB, Victoria
Metrics, Akumuli TimescaleDB (extension Postgres), FaunaDB, DolphinDB

Choisir plutét la simplicité d'intégration, le niveau de support, efc.

Module « Paradigmes de Programmation pour le Calcul Scientifique » universite paris-sACLAY 23/01/2026

CUL

= I W | es alertes — avec une TSD

{ULATION

| s‘agit de pouvoir nofifier de maniére ciblée
Grammaire de 'observabilité

Collecte des informations (traces, log, alertes)

< riodi
periodiques Etat / status
Notifications : SMS/Slack/email/...

Module « Paradigmes de Programmation pour le Calcul Scientifique » universite paris-sACLAY 23/01/2026

S LCUL
Al HAUTE

RFORMAN(
{ULATION

Chiffrage / Devisage

Dans les activités du futur consultant HPC, il peut y avoir celle du
chiffrage/devisage

Normalement, il faut une expérience de 3 ans (au moinsl), quand on est
junior dans le domaine d'intérét, pour construire un budget

Module « Paradigmes de Programmation pour le Calcul Scientifique » universite paris-sACLAY 23/01/2026

g s, CcALCUL
L HAUTE

wws Objectifs Prix / Réalisation

{ULATION

Construire un prix =» élément déterminant de la vente !

Limiter les risques : connaitre la durée, l'effectif et la contingence.
Durée / Eftectit = en JH

Qg métriques = 1 mois 35h = 20 JH en moyenne

La qualification est décrite en 4 niveaux :
Expert - Xpert
Senior - P
Confirmé - Mid
Junior - A level

Module « Paradigmes de Programmation pour le Calcul Scientifique » universite paris-sACLAY 23/01/2026

A CUL
%% () HAUTE

NN evo. CCRFORMAN
w ULATIOR

Les qualifications
Junior

Sortie d'école
Role/Responsabilité : les activités simples/non engageantes contractuellement/pas relations externes

Confirmé

1 a2ans

Role/Responsabilité : foutes les activités simples sans relations externes/activité moyennement
complexes

Senior
3abans
Role/Responsabilité : foutes les activités avec acteurs internes/externes, supervise les Juniors
Expert
6 ANS
Role/Responsabilité : toutes les activités internes/externes, trés complexes, supervise Juniors/Confirmés

Module « Paradigmes de Programmation pour le Calcul Scientifique » universite paris-sACLAY 23/01/2026

A L.CUL
WFe) HAUTE
i@ CERFORMAN

\ ULATION

Outil Jalons
Permet de quantifier la réussite (ou I'échec
Permet d'avoir une approche pragmatigue (go/no-go — réorientation)

Outils Pilotage

Comité de pilotage / Comité de suivi
Méthodologie SCRUM Agile, Cycle en V

Outil RACI
Décrire les responsabilités

Contingence
Intégrer le risque dans le prix

Module « Paradigmes de Programmation pour le Calcul Scientifique » universite paris-sACLAY 23/01/2026

S, CcALCUL

Bl HAUTE
RFORMAN(
{ULATION

Jalons

Les jalons fixes = tautologie - gabarit date/niveau de fonction
Par ex : capacité a lire un fichier test

Les jalons flottants = idiot - =des objectifs

La backlog mixe les activités et les jalons

Is sont nécessaires au pilotage

Module « Paradigmes de Programmation pour le Calcul Scientifique » universite paris-sACLAY 23/01/2026

oW Pilotage

ULATION

le cycleen V :
Chaque jalon de production est en correspondance avec un jalon de livraison.

E.B./S.F.D ecette — Pré-prod

Conception tégration

Développement
|
i

Production | Livraison

Module « Paradigmes de Programmation pour le Calcul Scientifique » universite paris-sACLAY 23/01/2026

- 7',3‘ oTE

"'Wéf ULATION

Pilotage

Agile — SCRUM

Méthode itérative — construire « en réaction » au cycle en V

Le cycle repose sur 1 EB claire — avec un client qui valide ses besoins.
=>|e client peut avoir du mal & définir ses besoins
=>|e colt de cette définition peut étre ventilé en plusieurs étapes

Dans le cycle en V : le développement « consomme » 1 CP
=»pourquoi ne pas auto-organisé un consensus 4 la place du CP?
=>»concept de Story / Backlog / Sprint

Dans le cycle en V : identité du produit n‘est pas « pilotée » (car il n’y

a pas de jalon pour cal — en Agileily a 1 PO

=>|e poste de Directeur de Produit ou Product Owner (PO) est une réponse &
ce défaut du cycle en V

Module « Paradigmes de Programmation pour le Calcul Scientifique » universite paris-sACLAY 23/01/2026

- LCUL
Zge 0 HAUTE
33 AL

@l DERFORMAN
{ULATION

Les responsabilités

Matrice RACI = Tableau nominatif

Définir au début du projet le périmétre précis de l'intervention et les
zones de responsabilité

RACI = Responsible, Accountable, Consulted, and Informed. =» en
francais : Responsablels), Autorité Superviseur (1 seul par ligne),
Consulté (Exper), Informé (non décisionnairel
Attention au faux ami francais A et R peuvent étre inversé |

RACI francais avec : Responsable (1 seul) / Acteur / Consulté / Informé

EB R R A

SFD R A
Recette A C

Module « Paradigmes de Programmation pour le Calcul Scientifique » universite paris-sACLAY 23/01/2026

§o. CuL

% S\ §

W\l HAUTE
W@zl O RFORMAN
ULATIOM

Architecture

Prise en compte de la livraison
Si livraison échelonnée = micro-service avec ou sans BUS
Si Livraison totale = monolithe (le micro-service coute plus cherl

il y a une hybridation possible = plusieurs monolithes (=»micro
services)

= attention les micro-services ameénent le métier d’urbaniste
(D&finition du POS)

Module « Paradigmes de Programmation pour le Calcul Scientifique » universite paris-sACLAY 23/01/2026

g%, ciLcuL

"Wl HAUTE
RFORMAN(
{ULATION

Les colts

Si définition d'un format de fichier =»dé&finir le format = SFD

Si usage d'une DB (SQL ou NoSQL) =>»définir les modeles
d'initialisation (=schémal, la reprise des données, les
sauvegardes, les rétentions = co0t

Si usage d'une bibliothéque (OpenSource ou pas) =»colt
d'évolution, si la bibliothéque évolue avant la fin du projet?

Test/Recette =»ce qui coute est la confrontation négative au
client

Module « Paradigmes de Programmation pour le Calcul Scientifique » universite paris-sACLAY 23/01/2026

e LCUL

e HAUTE

N@s ' DERFORMAN
ULATION

La documentation

Utilité

Support de conviction pour le projet

Aide a I'exploitation

Aide & la maintenance

Capitalisation pour des futures ventes
CoUt

Ecriture

Correction

Validation

Archivage

= C'est ['élément nécessaire & la capitalisation

Module « Paradigmes de Programmation pour le Calcul Scientifique » universite paris-sACLAY 23/01/2026

LCUL

(=W Contingence / Garantie / Marge

{ULATION

La contingence : un surcout pour un Plan B — Risque interne
La Garantie (SLA = Service Level Agreement) est Contractuelle
Marge = le bénéfice de l'opération (Secref)

Ces surcout sont cumulatifs

Module « Paradigmes de Programmation pour le Calcul Scientifique » universite paris-sACLAY 23/01/2026

g s, caiLCUL

"l HAUTE
RFORMAN(
{ULATION

Capitalisation

Comment capitaliser?

Si le produit est architecturé en Micro-Service
Si les plans de tests sont lisibles

Si le code est commenté

Si les bibliothéques sont maintenues

Si les schéma de DB / Format de fichier sont « équilibrés » { pas d'effet de
GOD class)

Si les codeurs sont disponibles

Module « Paradigmes de Programmation pour le Calcul Scientifique » universite paris-sACLAY 23/01/2026

o & .CUL
e
]%’4.,-?;' Wl HAUTE

NS RFORMAN
w ULATIO}

Le mode de livraison

3 environnements :
DEV / Pré-prod / PROD : stricte séparation des environnements

=>DEV : chaque DEV a la responsabilité de son environnement, les fichiers de
fest sont supervisés par le client

=>Pré-prod : espace de qualification, est « similaire @ la PROD » - données
d'intéréts anonymisées — ici le DEV ne peut pas faire ce qu'il veut // espace qui
peut serir de plan B pour la PROD

=>»PROD : espace de production — recoit les livraisons

Module « Paradigmes de Programmation pour le Calcul Scientifique » universite paris-sACLAY 23/01/2026

A LCUL
</ :/ﬂ ﬁﬁﬁﬁ

SFD - Recette (=qualification en préprod? En prod?)
Livraisons Dev / Préprod / Prod
Run

Module « Paradigmes de Programmation pour le Calcul Scientifique » universite paris-sACLAY 23/01/2026

