
23 / 01 / 2026

#7
23/01/2026
jean-michel.batto@cea.fr

https://gogs.eldarsoft.com/M2_IHPS



.0223/01/2026Module « Paradigmes de Programmation pour le Calcul Scientifique »

Les 23 patterns :

10

11 12

13

15

14

19

20

18

17

17 21

22

23

16



.0323/01/2026Module « Paradigmes de Programmation pour le Calcul Scientifique »

Typologie Nom du Design Pattern Ce qui doit être ajuster verbe
composition 
sous jacente

mélange de 
classes ?

Creational

Abstract Factory famille d'objets dépendants structure non

Builder
Comment créer un objet composite dont la structure du 
composite est indépendante

liste non

Factory Method
Sous classe d'un objet qui est instanciée sans connaitre la classe 
ancêtre (connaissance retardée)

filtrage vtab

Prototype Classe d'objet qui est instanciée grâce à un constructeur de copie copie=verbe liste non

Singleton La seule instance d'une classe copie=0=verbe non

Structural

Adapter accède à un objet en modifiant l'interface non
Bridge Fait l'implémentation d'un objet par découplage découplage non

Composite structure et composition d'un objet vue de manière uniforme arbre non

Decorator Responsabilité d'un objet sans héritage - ajout dynamique filtrage vtab

Facade Exposer une interface à un sous-système filtrage vtab
Flyweight cout de stockage d'un objet, partage de l'état état=verbe liste non

Proxy
Comment un objet est accédé, son emplacement (mémoire, 
disque) - effet miroir

queue non

Behavioral

Chain of Responsibility Un objet qui peut répondre à une demande avec découpplage découplage queue filtrage vtab

Command
quand et comment une commande peut être faite - la 
commande devient un objet

structure non

Interpreter grammaire et interprétation d'un objet non

Iterator se déplacer dans une structure d'objet sans en connaitre le détail liste filtrage vtab

Mediator Comment et avec quels objets sont décrites les interactions non

Memento
Quelles sont les informations privées qui sont stockée à part et 
quand?

état=verbe
état 
(queue=infinie)

non

Observer l'effectif des objets observés et quand s'effectue la mise à jour queue non

State les états d'un objet sont des variables, avec un handler() état=verbe structure filtrage vtab

Strategy un algorithme
extension=ver
be

structure filtrage vtab

Template Method les étapes/squelette d'un algorithme structure non

Visitor
les opérations élémentaires sont appliquées à un objet sans 
modifier sa classe

liste non



.0423/01/2026Module « Paradigmes de Programmation pour le Calcul Scientifique »





int main(int argc, char* argv[]) {

Client client;

client.setPrototype(new ConcretePrototype1);

Prototype *p1 = client.client_clone();

p1->checkPrototype();

client.setPrototype(new ConcretePrototype2);

Prototype *p2 = client.client_clone();

p2->checkPrototype();

}

https://godbolt.org/z/M87PrKxrh


.0523/01/2026Module « Paradigmes de Programmation pour le Calcul Scientifique »





int main() {

Client client;

std::cout << "new Adaptee1" << std::endl;

ConcreteAdapter adp1(new Adaptee1());

client.do_client_operation(adp1);

std::cout << "new Adaptee2" << std::endl;

ConcreteAdapter adp2(new Adaptee2());

client.do_client_operation(adp2);

}

https://godbolt.org/z/xj6reoaGd


.0623/01/2026Module « Paradigmes de Programmation pour le Calcul Scientifique »





int main() {

Composite composite;

composite.group("principal");

for (unsigned int i = 0; i < 3; ++i) {

composite.add(new Leaf(i));

}

Composite composite2;

composite2.group("secondaire");

composite.add(&composite2);

composite.remove(0);

composite.operation();

Component *component1 = composite.getChild(0);

component1->operation();

Component *component2 = composite.getChild(3);

component2->operation();

composite.enumerate();

}

https://godbolt.org/z/ooK67xeGq


.0723/01/2026Module « Paradigmes de Programmation pour le Calcul Scientifique »





https://godbolt.org/z/xEfWhT7zc


.0823/01/2026Module « Paradigmes de Programmation pour le Calcul Scientifique »





https://godbolt.org/z/cTbP35sd4


.0923/01/2026Module « Paradigmes de Programmation pour le Calcul Scientifique »





https://godbolt.org/z/oes9M9bbT


.01023/01/2026Module « Paradigmes de Programmation pour le Calcul Scientifique »





https://godbolt.org/z/GMcKodP9G


.01123/01/2026Module « Paradigmes de Programmation pour le Calcul Scientifique »





https://godbolt.org/z/o5Eneo1sG


.01223/01/2026Module « Paradigmes de Programmation pour le Calcul Scientifique »









https://doi.org/10.1145/1984674.1984682


.01323/01/2026Module « Paradigmes de Programmation pour le Calcul Scientifique »















.01423/01/2026Module « Paradigmes de Programmation pour le Calcul Scientifique »





int main(int argc, char* argv[]) {

Singleton *singleton = Singleton::Instance();

singleton->checkSingleton();

//we create a new singleton2 but...

Singleton *singleton2 = Singleton::Instance();

singleton2->checkSingleton();

}

https://godbolt.org/z/5916Mc6Ez


.01523/01/2026Module « Paradigmes de Programmation pour le Calcul Scientifique »





https://godbolt.org/z/qMKrsoY7M


.01623/01/2026Module « Paradigmes de Programmation pour le Calcul Scientifique »



int main() {

Context context(new ConcreteStrategyB());

context.execute();

}



https://godbolt.org/z/zbaK3Wr5T


.01723/01/2026Module « Paradigmes de Programmation pour le Calcul Scientifique »





https://godbolt.org/z/xj6reoaGd


.01823/01/2026Module « Paradigmes de Programmation pour le Calcul Scientifique »





private:
SubSystem1 *subsystem1;

SubSystem2 *subsystem2;

SubSystem3 *subsystem3;

SubSystem4 *subsystem4;

};

int main() {

Facade facade;

facade.operationWrapper();

}

https://godbolt.org/z/oWTWTaPc3


.01923/01/2026Module « Paradigmes de Programmation pour le Calcul Scientifique »

















.02023/01/2026Module « Paradigmes de Programmation pour le Calcul Scientifique »























.02123/01/2026Module « Paradigmes de Programmation pour le Calcul Scientifique »



.02223/01/2026Module « Paradigmes de Programmation pour le Calcul Scientifique »

















.02323/01/2026Module « Paradigmes de Programmation pour le Calcul Scientifique »















.02423/01/2026Module « Paradigmes de Programmation pour le Calcul Scientifique »



Application
‘main’

Stockage
queue

événements

paramétrages

Log



.02523/01/2026Module « Paradigmes de Programmation pour le Calcul Scientifique »









 













https://en.wikipedia.org/wiki/Single-responsibility_principle
https://en.wikipedia.org/wiki/Open%E2%80%93closed_principle
https://en.wikipedia.org/wiki/Liskov_substitution_principle
https://en.wikipedia.org/wiki/Interface_segregation_principle
https://en.wikipedia.org/wiki/Dependency_inversion_principle


.02623/01/2026Module « Paradigmes de Programmation pour le Calcul Scientifique »



Application

Logique métier

Abstraction

Communication

Stockage
queue

Adaptateur

Port/session

2005, Alistair Cockburn https://alistair.cockburn.us/hexagonal-architecture/
http://wiki.c2.com/?HexagonalArchitecture

https://alistair.cockburn.us/hexagonal-architecture/
http://wiki.c2.com/?HexagonalArchitecture


.02723/01/2026Module « Paradigmes de Programmation pour le Calcul Scientifique »

















.02823/01/2026Module « Paradigmes de Programmation pour le Calcul Scientifique »











 ⇒







.02923/01/2026Module « Paradigmes de Programmation pour le Calcul Scientifique »

 





















.03023/01/2026Module « Paradigmes de Programmation pour le Calcul Scientifique »













 





https://en.wikipedia.org/wiki/CAP_theorem


.03123/01/2026Module « Paradigmes de Programmation pour le Calcul Scientifique »



























https://martinfowler.com/articles/feature-toggles.html


.03223/01/2026Module « Paradigmes de Programmation pour le Calcul Scientifique »



















.03323/01/2026Module « Paradigmes de Programmation pour le Calcul Scientifique »























 

https://app.swaggerhub.com/


.03423/01/2026Module « Paradigmes de Programmation pour le Calcul Scientifique »























https://developers.google.com/protocol-buffers


.03523/01/2026Module « Paradigmes de Programmation pour le Calcul Scientifique »























.03623/01/2026Module « Paradigmes de Programmation pour le Calcul Scientifique »





















.03723/01/2026Module « Paradigmes de Programmation pour le Calcul Scientifique »

















https://12factor.net/fr/
https://www.rfc-editor.org/rfc/rfc5424.html


.03823/01/2026Module « Paradigmes de Programmation pour le Calcul Scientifique »

















https://www.influxdata.com/time-series-platform/chronograf/

https://www.influxdata.com/time-series-platform/chronograf/


.03923/01/2026Module « Paradigmes de Programmation pour le Calcul Scientifique »



















.04023/01/2026Module « Paradigmes de Programmation pour le Calcul Scientifique »





⇒

⇒

⇒















.04123/01/2026Module « Paradigmes de Programmation pour le Calcul Scientifique »





Vérifications
périodiques

TSD

Etat / status
Notifications : SMS/Slack/email/…

Collecte des informations (traces, log, alertes)



.04223/01/2026Module « Paradigmes de Programmation pour le Calcul Scientifique »







.04323/01/2026Module « Paradigmes de Programmation pour le Calcul Scientifique »

 



















.04423/01/2026Module « Paradigmes de Programmation pour le Calcul Scientifique »



























.04523/01/2026Module « Paradigmes de Programmation pour le Calcul Scientifique »























.04623/01/2026Module « Paradigmes de Programmation pour le Calcul Scientifique »













.04723/01/2026Module « Paradigmes de Programmation pour le Calcul Scientifique »





E.B. / S.F.D Recette – Pré-prod

Développement

IntégrationConception détaillée

Production Livraison



.04823/01/2026Module « Paradigmes de Programmation pour le Calcul Scientifique »























.04923/01/2026Module « Paradigmes de Programmation pour le Calcul Scientifique »





 





RACI (anglais) Jean Youcef Léa Pierre

EB R R A

SFD R A R

Recette A C R



.05023/01/2026Module « Paradigmes de Programmation pour le Calcul Scientifique »







  





.05123/01/2026Module « Paradigmes de Programmation pour le Calcul Scientifique »

 

 



 

 



.05223/01/2026Module « Paradigmes de Programmation pour le Calcul Scientifique »

























.05323/01/2026Module « Paradigmes de Programmation pour le Calcul Scientifique »











.05423/01/2026Module « Paradigmes de Programmation pour le Calcul Scientifique »





.05523/01/2026Module « Paradigmes de Programmation pour le Calcul Scientifique »













.05623/01/2026Module « Paradigmes de Programmation pour le Calcul Scientifique »



















.05723/01/2026Module « Paradigmes de Programmation pour le Calcul Scientifique »



Nom du 
langage

Date de 
création

Cible Typologie Cocomo
(lignes / 
jours)

Expressivité

Smalltalk 1980 bytecode Objet
Typ.dynamique

15 6* le C

C++ 1985 Compilateur Objet hybride
Typ.statique

25 2* le C

VHDL 1987 FPGA Procédural
Typ.statique

2 (le 
FPGA)

1/6 du C

Delphi Pascal 1995 Compilateur Objet simple
Typ.statique

30 5* le C

Java 1995 bytecode Objet simple
Typ.statique

40 4* le C

Python 2003 Interpreteur Tous les 
paradigmes
Typ.dynamique

40 4* le C



.05823/01/2026Module « Paradigmes de Programmation pour le Calcul Scientifique »









Go : 554 LOC per Month
C++ : 554 LOC per Month
10 FP per Month 2 * C
25 LOC/day * 22 day = 550 LOC

2017

https://www.ifpug.org/wp-content/uploads/2017/04/IYSM.-Thirty-years-of-IFPUG.-Software-Economics-and-Function-Point-Metrics-Capers-Jones.pdf


.05923/01/2026Module « Paradigmes de Programmation pour le Calcul Scientifique »















.06023/01/2026Module « Paradigmes de Programmation pour le Calcul Scientifique »

Etape Estimation 
LOC

JH

A 10 1 JH

B 20

C 5

D 15

1 JH : écrire l’EB / SFD / Recette
1 JH : écrire le code et test (50 LOC)



.06123/01/2026Module « Paradigmes de Programmation pour le Calcul Scientifique »

Etape Estimation 
LOC

JH

A 10 1 JH

B 20

C 5

D 15

1 JH : écrire l’EB / SFD / Recette
1 JH : écrire le code et test (50 LOC)

Attention : les IA génératives ajoutent un gain de *4 à *5 en productivité 



.06223/01/2026Module « Paradigmes de Programmation pour le Calcul Scientifique »

















.06323/01/2026Module « Paradigmes de Programmation pour le Calcul Scientifique »

Etape Estimation 
LOC

JH

A 10 2 JH

B1 20

B2 5

C1 30

C2 5

D 15

1 JH : écrire l’EB / SFD / Recette
2 JH : écrire le code et test (85 LOC > 1J travail)



.06423/01/2026Module « Paradigmes de Programmation pour le Calcul Scientifique »

Etape Estimation 
LOC

JH

A 10 1 JH

B 20

C 5

D 15

1 JH : écrire l’EB / SFD / Recette
1 JH : écrire le code et test (50 LOC)

Les étapes B et C peuvent être abstraites en POO – peut-être que l’on va doubler le code de
B et C.

Bénéfice POO : facile si c’est en mode « dent creuse » sinon, comme article JANUS.
PB lisibilité du gain et de l’anticipation (qui paye l’investissement?)



.06523/01/2026Module « Paradigmes de Programmation pour le Calcul Scientifique »

















.06623/01/2026Module « Paradigmes de Programmation pour le Calcul Scientifique »

Etape Estimation 
LOC

JH

A 10 2 JH

B1 20

B2 5

C1 30

C2 5

D 15

1 JH : écrire l’EB / SFD / Recette
2 JH : écrire le code et test (85 LOC > 1J travail)



.06723/01/2026Module « Paradigmes de Programmation pour le Calcul Scientifique »















.06823/01/2026Module « Paradigmes de Programmation pour le Calcul Scientifique »

Etape Estimation 
LOC

JH

A 10 1 JH

B 20

C 5

D 15

1 JH : écrire l’EB / SFD / Recette
1 JH : écrire le code et test (50 LOC)

Les étapes B et C peuvent être abstraites en POO – peut-être que l’on va doubler le code de
B et C.

Bénéfice POO : facile si c’est en mode « dent creuse » sinon, qui paye?
PB lisibilité du gain et de l’investissement



.06923/01/2026Module « Paradigmes de Programmation pour le Calcul Scientifique »

M1 M2 M3 Durée JH Durée x Cout JH Cout JH

DEV1 19 20 20 59 19470 330

DEV2 0 20 20 40 13200

Durée Total 99

Cout en JH 32 670,00 €

34 303,50 € 5%contingence

Cout 

interne 38 419,92 € 12%garantie

Prix client 54 885,60 € 30%marge

1 : utiliser un tableau (exemple joint)
2 : afficher les mois  permet de recoller les jalons



.07023/01/2026Module « Paradigmes de Programmation pour le Calcul Scientifique »



Vous partez de l’EB, de la SFD et des diagrammes présentés dans le document.
Vous estimez le nombre de LOC en C++ & le temps pour les TESTS
Vous estimez les JH pour une équipe de 2 DEV – mois à 20JH
A la fin, je vous demande un prix. A rendre le tableau XLS – dans le fichier les infos 
pertinentes.

La synthèse du prix et vos prompts dans un document PDF.


