
09 / 01 / 2026

#6
09/01/2026
jean-michel.batto@cea.fr

https://gogs.eldarsoft.com/M2_IHPS

.0209/01/2026Module « Paradigmes de Programmation pour le Calcul Scientifique »



Dans le dossier .ssh-source

sh install_clang_format_go.sh

 Installation du package et en plus il y a le compilateur go



.0309/01/2026Module « Paradigmes de Programmation pour le Calcul Scientifique »

.0409/01/2026Module « Paradigmes de Programmation pour le Calcul Scientifique »



.0509/01/2026Module « Paradigmes de Programmation pour le Calcul Scientifique »

.0609/01/2026Module « Paradigmes de Programmation pour le Calcul Scientifique »

.0709/01/2026Module « Paradigmes de Programmation pour le Calcul Scientifique »









https://gogs.eldarsoft.com/jmbatto/GLCS-CM5-TDXMP

.0809/01/2026Module « Paradigmes de Programmation pour le Calcul Scientifique »

















https://xcalablemp.org/handbook
https://icl.utk.edu/newsletter/presentations/2012/Sato-Updates-on-XcalableMP-PGAS-Language-2012-08-29.pdf

.0909/01/2026Module « Paradigmes de Programmation pour le Calcul Scientifique »

git config --global user.email "you@example.com"

git config --global user.name "Your Name"

git clone
https://login:password@votreprojet

GLCS-CM5-TDXMP

https://login:password@votreprojet

.01009/01/2026Module « Paradigmes de Programmation pour le Calcul Scientifique »







.01109/01/2026Module « Paradigmes de Programmation pour le Calcul Scientifique »

#pragma xmp nodes p(2, 2)  on décrit 4 noeuds

#pragma xmp template t(0 : 3, 0 : 3)  la tâche est une matrice 4 * 4

#pragma xmp distribute t(block, block) onto p  la tâche t va être distribuée
sur les 4 nœuds (on va donc avoir t(0,0), t(0,1), t(1,0), t(1,1)  p(0) = le
head (rank = 0))
XMP_Matrix A[4][4];  une matrice 4x4

#pragma xmp align A[i][j] with t(j, i)  inversion des indices

#pragma xmp shadow A[4][4]  on veut un shadow pour la consolidation

 Plus loin dans le code
#pragma xmp reflect(A)  synchronisation de l’espace mémoire

https://xcalablemp.org/handbook/distribute.html

https://xcalablemp.org/handbook/distribute.html

.01209/01/2026Module « Paradigmes de Programmation pour le Calcul Scientifique »



 usleep(100)





.01309/01/2026Module « Paradigmes de Programmation pour le Calcul Scientifique »

























.01409/01/2026Module « Paradigmes de Programmation pour le Calcul Scientifique »











http://gogs.eldarsoft.com/M2_IHPS/PPCS-CM6-TDXMP.git

.01509/01/2026Module « Paradigmes de Programmation pour le Calcul Scientifique »









100

1.0,2.0,3.0,4.0,5.0,6.0,7.0,8.0,9.0,10.0

2.0,0.0,4.0,5.0,6.0,7.0,8.0,9.0,10.0,11.0

3.0,4.0,5.0,6.0,7.0,8.0,9.0,10.0,11.0,12.0

4.0,5.0,6.0,7.0,8.0,9.0,10.0,11.0,12.0,13.0

5.0,6.0,7.0,8.0,9.0,10.0,11.0,12.0,13.0,14.0

6.0,7.0,8.0,9.0,10.0,11.0,12.0,13.0,14.0,15.0

7.0,8.0,9.0,10.0,11.0,12.0,13.0,14.0,15.0,16.0

8.0,9.0,10.0,11.0,12.0,13.0,14.0,15.0,16.0,17.0

9.0,10.0,11.0,12.0,13.0,14.0,15.0,16.0,17.0,18.0

10.0,11.0,12.0,13.0,14.0,15.0,16.0,17.0,18.0,19.0

Effectif des valeurs

Les valeurs

.01609/01/2026Module « Paradigmes de Programmation pour le Calcul Scientifique »

//Le résultat est stocké dans une variable globale

//Pour calculer un histogramme il nous faut un tableau de
//valeur (*data) et un effectif (rows)

void calcule_histo(float *data, int rows) {

for (int i = 0; i < rows; i++) {

int j = (int)data[i];

if ((j >= 0) && (j < 20)) {

data_out[j]++;

}

}

}

.01709/01/2026Module « Paradigmes de Programmation pour le Calcul Scientifique »



#pragma xmp nodes p(1)

#pragma xmp template t[:]

#pragma xmp distribute t(block) onto p

float *data_in;

#pragma xmp align data_in[i] with t(i)

#pragma xmp shadow data_in[*]

Permet de tester sur 1 noeud

Retarde l’allocation des templates

Distribue les templates sur les noeuds

Positionne la variable data_in
sur les templates
objet de l’optimisation XMP

.01809/01/2026Module « Paradigmes de Programmation pour le Calcul Scientifique »

#pragma xmp nodes p(2)  notation pour dire qu’il y a
2 noeuds  ils découpent l’espace des 100 templates

mpirun –n 2

#pragma xmp nodes p(*)  allocation dynamique !

t=50;p=1

t=50;p=0

.01909/01/2026Module « Paradigmes de Programmation pour le Calcul Scientifique »

xmp_init_mpi(&argc, &argv);

initialise le contexte MPI

xmp_finalize_mpi();

finalise le contexte MPI

//aspect dynamique à fixer dans le code C

#pragma xmp template_fix t[rows]

Il s’agit de définir la taille des templates et
d’allouer la mémoire

 data_in = xmp_malloc(xmp_desc_of(data_in), rows);

.02009/01/2026Module « Paradigmes de Programmation pour le Calcul Scientifique »

void calcule_histo(float *data, int rows) {

#pragma xmp loop on t(i)

for (int i = 0; i < rows; i++) {

int j = (int)data[i];

if ((j >= 0) && (j < 20)) {

data_out[j]++;

}

}

}

Si on enlève ce pragma, plus d’intérêt de XMP

.02109/01/2026Module « Paradigmes de Programmation pour le Calcul Scientifique »





.02209/01/2026Module « Paradigmes de Programmation pour le Calcul Scientifique »









.02309/01/2026Module « Paradigmes de Programmation pour le Calcul Scientifique »



#pragma xmp reduction(+ : tmp) 



.02409/01/2026Module « Paradigmes de Programmation pour le Calcul Scientifique »



 clock_gettime(CLOCK_MONOTONIC_RAW,
&start_time); double start_time = MPI_Wtime();)











.02509/01/2026Module « Paradigmes de Programmation pour le Calcul Scientifique »



http://gogs.eldarsoft.com/M2_IHPS/PPCS-CM6-OMPXMP.git

.02609/01/2026Module « Paradigmes de Programmation pour le Calcul Scientifique »















.02709/01/2026Module « Paradigmes de Programmation pour le Calcul Scientifique »









.02809/01/2026Module « Paradigmes de Programmation pour le Calcul Scientifique »











.02909/01/2026Module « Paradigmes de Programmation pour le Calcul Scientifique »





 



 

.03009/01/2026Module « Paradigmes de Programmation pour le Calcul Scientifique »







.03109/01/2026Module « Paradigmes de Programmation pour le Calcul Scientifique »

Les 23 patterns décrits :

.03209/01/2026Module « Paradigmes de Programmation pour le Calcul Scientifique »

Typologie Nom du Design Pattern Ce qui doit être ajuster verbe
composition
sous jacente

mélange de
classes ?

Creational

Abstract Factory famille d'objets dépendants structure non

Builder
Comment créer un objet composite dont la structure du composite
est indépendante

liste non

Factory Method
Sous classe d'un objet qui est instanciée sans connaitre la classe
ancêtre (connaissance retardée)

filtrage vtab

Prototype Classe d'objet qui est instanciée grâce à un constructeur de copie copie=verbe liste non

Singleton La seule instance d'une classe copie=0=verbe non

Structural

Adapter accède à un objet en modifiant l'interface non
Bridge Fait l'implémentation d'un objet par découplage découplage non

Composite structure et composition d'un objet vue de manière uniforme arbre non

Decorator Responsabilité d'un objet sans héritage - ajout dynamique filtrage vtab

Facade Exposer une interface à un sous-système filtrage vtab
Flyweight cout de stockage d'un objet, partage de l'état état=verbe liste non

Proxy
Comment un objet est accédé, son emplacement (mémoire,
disque) - effet miroir

queue non

Behavioral

Chain of Responsibility Un objet qui peut répondre à une demande avec découpplage découplage queue filtrage vtab

Command
quand et comment une commande peut être faite - la commande
devient un objet

structure non

Interpreter grammaire et interprétation d'un objet non

Iterator se déplacer dans une structure d'objet sans en connaitre le détail liste filtrage vtab

Mediator Comment et avec quels objets sont décrites les interactions non

Memento
Quelles sont les informations privées qui sont stockée à part et
quand?

état=verbe
état
(queue=infinie)

non

Observer l'effectif des objets observés et quand s'effectue la mise à jour queue non

State les états d'un objet sont des variables, avec un handler() état=verbe structure filtrage vtab

Strategy un algorithme
extension=verb
e

structure filtrage vtab

Template Method les étapes/squelette d'un algorithme structure non

Visitor
les opérations élémentaires sont appliquées à un objet sans
modifier sa classe

liste non

.03309/01/2026Module « Paradigmes de Programmation pour le Calcul Scientifique »

.03409/01/2026Module « Paradigmes de Programmation pour le Calcul Scientifique »





int main(int argc, char* argv[]) {

Creator *creator = new ConcreateCreator(ConcreateCreator::A);

Product *productA = creator->factoryMethod();

productA->somethingProduct();

Product *productB = creator->factoryMethod();

productB->somethingProduct();

}

https://godbolt.org/z/7WPYfzvsa

.03509/01/2026Module « Paradigmes de Programmation pour le Calcul Scientifique »



int main(int argc, char* argv[]) {

AbstractFactory* cf1 = new ConcreateFactory1();

AbstractProductA* productA1 = cf1->createProductA();

productA1->somethingProduct();

AbstractProductB* productB1 = cf1->createProductB();

productB1->somethingProduct();

AbstractFactory* cf2 = new ConcreateFactory2();

AbstractProductA* productA2 = cf2->createProductA();

productA2->somethingProduct();

AbstractProductB* productB2 = cf1->createProductB();

productB2->somethingProduct();
}

https://godbolt.org/z/hh5se4o7j

.03609/01/2026Module « Paradigmes de Programmation pour le Calcul Scientifique »

// Factory Method Pattern
type Animal interface { Speak() string }
type Dog struct{}
type Cat struct{}
func (d *Dog) Speak() string { return "Woof!" }
func (c *Cat) Speak() string { return "Meow!" }
func CreateAnimal(animalType string) Animal {

switch animalType { case "dog": return &Dog{} case "cat": return &Cat{}
default: return nil }

}
// Abstract Factory Pattern
type Button interface { Paint() }
type WinButton struct{}
type MacButton struct{}
func (w *WinButton) Paint() { fmt.Println("Windows button") }
func (m *MacButton) Paint() { fmt.Println("Mac button") }
type GUIFactory interface { CreateButton() Button }
type WinFactory struct{}
type MacFactory struct{}
func (w *WinFactory) CreateButton() Button { return &WinButton{} }
func (m *MacFactory) CreateButton() Button { return &MacButton{} }

En Golang
https://go.dev/play/p/dJ7xS_I92S9

https://go.dev/play/p/BNninTWvAj6

https://go.dev/play/p/dJ7xS_I92S9
https://go.dev/play/p/dJ7xS_I92S9
https://go.dev/play/p/BNninTWvAj6

.03709/01/2026Module « Paradigmes de Programmation pour le Calcul Scientifique »

Les 23 patterns décrits :

8

9

10

11 12

13

15

14

.03809/01/2026Module « Paradigmes de Programmation pour le Calcul Scientifique »

Typologie Nom du Design Pattern Ce qui doit être ajuster verbe
composition
sous jacente

mélange de
classes ?

Creational

Abstract Factory famille d'objets dépendants structure non

Builder
Comment créer un objet composite dont la structure du
composite est indépendante

liste non

Factory Method
Sous classe d'un objet qui est instanciée sans connaitre la classe
ancêtre (connaissance retardée)

filtrage vtab

Prototype Classe d'objet qui est instanciée grâce à un constructeur de copie copie=verbe liste non

Singleton La seule instance d'une classe copie=0=verbe non

Structural

Adapter accède à un objet en modifiant l'interface non
Bridge Fait l'implémentation d'un objet par découplage découplage non

Composite structure et composition d'un objet vue de manière uniforme arbre non

Decorator Responsabilité d'un objet sans héritage - ajout dynamique filtrage vtab

Facade Exposer une interface à un sous-système filtrage vtab
Flyweight cout de stockage d'un objet, partage de l'état état=verbe liste non

Proxy
Comment un objet est accédé, son emplacement (mémoire,
disque) - effet miroir

queue non

Behavioral

Chain of Responsibility Un objet qui peut répondre à une demande avec découpplage découplage queue filtrage vtab

Command
quand et comment une commande peut être faite - la
commande devient un objet

structure non

Interpreter grammaire et interprétation d'un objet non

Iterator se déplacer dans une structure d'objet sans en connaitre le détail liste filtrage vtab

Mediator Comment et avec quels objets sont décrites les interactions non

Memento
Quelles sont les informations privées qui sont stockée à part et
quand?

état=verbe
état
(queue=infinie)

non

Observer l'effectif des objets observés et quand s'effectue la mise à jour queue non

State les états d'un objet sont des variables, avec un handler() état=verbe structure filtrage vtab

Strategy un algorithme
extension=ver
be

structure filtrage vtab

Template Method les étapes/squelette d'un algorithme structure non

Visitor
les opérations élémentaires sont appliquées à un objet sans
modifier sa classe

liste non

.03909/01/2026Module « Paradigmes de Programmation pour le Calcul Scientifique »





int main(int argc, char* argv[]) {

Singleton *singleton = Singleton::Instance();

singleton->checkSingleton();

//we create a new singleton2 but...

Singleton *singleton2 = Singleton::Instance();

singleton2->checkSingleton();

}

https://godbolt.org/z/5916Mc6Ez

.04009/01/2026Module « Paradigmes de Programmation pour le Calcul Scientifique »





int main() {

Implementor* implementation = new ConcreteImplementorA;

Abstraction* abstraction = new Abstraction(implementation);

std::cout << abstraction->operation();

std::cout << std::endl;

delete implementation;

delete abstraction;

implementation = new ConcreteImplementorB;

abstraction = new RefinedAbstraction(implementation);

std::cout << abstraction->operation();

std::cout << std::endl;

delete implementation;

delete abstraction;

}

https://godbolt.org/z/EfafGzMWG

.04109/01/2026Module « Paradigmes de Programmation pour le Calcul Scientifique »





https://godbolt.org/z/9f8j3xM6r

.04209/01/2026Module « Paradigmes de Programmation pour le Calcul Scientifique »





private:
SubSystem1 *subsystem1;

SubSystem2 *subsystem2;

SubSystem3 *subsystem3;

SubSystem4 *subsystem4;

};

int main() {

Facade facade;

facade.operationWrapper();

}

https://godbolt.org/z/oWTWTaPc3

.04309/01/2026Module « Paradigmes de Programmation pour le Calcul Scientifique »





int main() {

Originator *originator = new Originator();

CareTaker *careTaker = new CareTaker(originator);

originator->setState(0);

careTaker->save();

originator->setState(1);

careTaker->save();

originator->setState(2);

careTaker->save();

careTaker->printSavedStates();

careTaker->undo();

careTaker->printSavedStates();

careTaker->redo();

careTaker->printSavedStates();

careTaker->undo();

careTaker->undo();

careTaker->undo();

careTaker->printSavedStates();

}

https://godbolt.org/z/v7qW3TWqb

.04409/01/2026Module « Paradigmes de Programmation pour le Calcul Scientifique »





int main() {

Client* client = new Client();

client->h = new ConcreteHandler1();

Handler* h2 = new ConcreteHandler2();

client->h->handleRequest();

client->h->setSuccessor(h2);

client->h->handleRequest();

//h2->setSuccessor(client->h);

client->h->handleRequest();

}

https://godbolt.org/z/KMzn87ThM

.04509/01/2026Module « Paradigmes de Programmation pour le Calcul Scientifique »





int main(int argc, char* argv[]) {

Director director;

director.setBuilder(new ConcreateBuilder1);

director.construct();

Product product1 = director.getProduct();

product1.checkProduct();

director.setBuilder(new ConcreateBuilder2);

director.construct();

Product product2 = director.getProduct();

product2.checkProduct();

director.setBuilder(0);

director.construct();

Product product3 = director.getProduct();

product3.checkProduct();

}

https://godbolt.org/z/zh8vjWj44

.04609/01/2026Module « Paradigmes de Programmation pour le Calcul Scientifique »





https://godbolt.org/z/6zsxsaPoq

.04709/01/2026Module « Paradigmes de Programmation pour le Calcul Scientifique »

int main() {

ConcreteVisitor1 visitor1;

ConcreteVisitor2 visitor2;

ConcreteElementA elementA("String ElementA ConcreteElementA");

elementA.accept(visitor1);

elementA.accept(visitor2);

ConcreteElementB elementB("String ElementB ConcreteElementB");

elementB.accept(visitor1);

elementB.accept(visitor2);

}

