
06 / 01 / 2026

#5
06/01/2026
jean-michel.batto@cea.fr

https://gogs.eldarsoft.com/M2_IHPS

.0206/01/2026Module « Paradigmes de Programmation pour le Calcul Scientifique »













.0306/01/2026Module « Paradigmes de Programmation pour le Calcul Scientifique »









Quelles sont les principales DB Time Series et en quels langages sont elles

écrites ? Peux-tu faire une réponse concise ?

.0406/01/2026Module « Paradigmes de Programmation pour le Calcul Scientifique »







.0506/01/2026Module « Paradigmes de Programmation pour le Calcul Scientifique »

grafana:

container_name: influxdb_local

image: philhawthorne/docker-influxdb-grafana:latest

image disponible sur hub.docker.com

.0606/01/2026Module « Paradigmes de Programmation pour le Calcul Scientifique »











https://hub.docker.com/r/philhawthorne/docker-influxdb-grafana

https://hub.docker.com/r/philhawthorne/docker-influxdb-grafana

.0706/01/2026Module « Paradigmes de Programmation pour le Calcul Scientifique »











http://127.0.0.1:3003/

.0806/01/2026Module « Paradigmes de Programmation pour le Calcul Scientifique »





http://127.0.0.1:3004/

.0906/01/2026Module « Paradigmes de Programmation pour le Calcul Scientifique »

Chaque nœud a son service telegraf – qui peut suivre des applications et des services

Mécanisme de jauge : interruption = saut dans la jauge

.01006/01/2026Module « Paradigmes de Programmation pour le Calcul Scientifique »



 echo "foo.bar.test1:+1|g" | nc -u localhost 8125

apparait foo_bar_test1 dans
chronograf

.01106/01/2026Module « Paradigmes de Programmation pour le Calcul Scientifique »



 

echo "foo.bar.test1:+1|g" | nc -u localhost 8125

Telegraf ajoute une encapsulation https et redirige localhost vers un collecteur

.01206/01/2026Module « Paradigmes de Programmation pour le Calcul Scientifique »







.01306/01/2026Module « Paradigmes de Programmation pour le Calcul Scientifique »









https://github.com/guzlewski/netcat.git
https://github.com/romanbsd/statsd-c-client.git

.01406/01/2026Module « Paradigmes de Programmation pour le Calcul Scientifique »





func Chrono(since time.Duration, transaction string) {

var client *statsd.Client

client = statsd.NewClient("localhost:8125", statsd.MaxPacketSize(1400),
statsd.MetricPrefix(ChronoGeneralTag+".")) le point est supprimé

client.PrecisionTiming("requestTime",

since,

statsd.StringTag("transaction", transaction))

client.Close()

}

}

Possibilité d’utiliser un shell, et SLURM cf. suite du cours (bonification importante si SLURM)

.01506/01/2026Module « Paradigmes de Programmation pour le Calcul Scientifique »











.01606/01/2026Module « Paradigmes de Programmation pour le Calcul Scientifique »

16

Slurmctld
(backup)

Slurmctld
(master)

Slurmdbd
(backup)

Slurmdbd
(master)

slurmdslurmd

slurmd

slurmd

slurmd

slurmd

slurmdslurmd

slurmd

slurmd

MySQLSAN

Login Nodes Compute Nodes

Management Nodes (cluster) Management Nodes (cluster/site)

Workstations

.01706/01/2026Module « Paradigmes de Programmation pour le Calcul Scientifique »

Ce que contient l’image jmbatto/m2chps-mpi41-slurm

Slurm (3 instances possibles du nœuds)
Démarrées avec Supervisord (et non avec tini)
plusieurs daemon sont démarrés avec cette image
• sshd
• telegraf pour la télémétrie
• slurm (avec un choix selon le paramétrage

docker-compose)
• munge

.01806/01/2026Module « Paradigmes de Programmation pour le Calcul Scientifique »

.01906/01/2026Module « Paradigmes de Programmation pour le Calcul Scientifique »

 













docker compose up –d

Dans cette nouvelle version on ajoute 2 nœuds

(c3/c4) et 1 conteneur avec vscode et 1 conteneur

pour télémétrie



.02006/01/2026Module « Paradigmes de Programmation pour le Calcul Scientifique »



sacctmgr show association -p user=root

scontrol show partition

scontrol show nodes

sinfo -Nel



sacctmgr --immediate add cluster name=linux



 Dans le répertoire /usr/local/var/mpishare faire

 git clone http://gogs.eldarsoft.com/M2_IHPS/glcs_slurm.git
Dans les répertoires test1/test2

mpicc –g3 –o elementary elementary.c

http://gogs.eldarsoft.com/M2_IHPS/glcs_slurm.git

.02106/01/2026Module « Paradigmes de Programmation pour le Calcul Scientifique »





 

 NodeName, Nodes, MaxNodes

 

.02206/01/2026Module « Paradigmes de Programmation pour le Calcul Scientifique »





salloc -n 4 mpirun ./elementary 

sbatch script0.sh

sacct -j %jobid obtenu au moment du sbatch%





sbatch -n 4 xxx.sh

squeue -s -j %jobid%

sacct -j%jobid%

squeue -s -i 30 -j %jobid%

sacct -j %jobid%

.02306/01/2026Module « Paradigmes de Programmation pour le Calcul Scientifique »

//vérifie l'état de la queue

squeue

//puis allocation de 4 nœuds (il s’agit de c1 / c2 / c3 / c4)

salloc --time=05:00 -N 4

//vérification des noeuds

srun hostname

de la queue

squeue
//permet d'avoir les informations sur les jobs

sacct --format=JobID,elapsed,ncpus,ntasks,state,node

.02406/01/2026Module « Paradigmes de Programmation pour le Calcul Scientifique »









.02506/01/2026Module « Paradigmes de Programmation pour le Calcul Scientifique »

forge
git clone / git pull /
pushtélémétrie

Écriture

Formatage

C

vscode

test
Environnement
développement

.02606/01/2026Module « Paradigmes de Programmation pour le Calcul Scientifique »

forge
git clone / git pull /
pushgrafana

Image
docker
vscode

codercom/code-
server

+clang-format

Image
docker

slurmctld

Image
docker

c1

Image
docker c2

Image
docker

c3

Image
docker c4

Service
mysql

Attention : il manque la cybersécurité

.02706/01/2026Module « Paradigmes de Programmation pour le Calcul Scientifique »

























.02806/01/2026Module « Paradigmes de Programmation pour le Calcul Scientifique »









https://gogs.eldarsoft.com/jmbatto/GLCS-CM5-TDXMP

.02906/01/2026Module « Paradigmes de Programmation pour le Calcul Scientifique »

















https://xcalablemp.org/handbook
https://icl.utk.edu/newsletter/presentations/2012/Sato-Updates-on-XcalableMP-PGAS-Language-2012-08-29.pdf

.03006/01/2026Module « Paradigmes de Programmation pour le Calcul Scientifique »

git config --global user.email "you@example.com"

git config --global user.name "Your Name"

git clone
https://login:password@votreprojet

GLCS-CM5-TDXMP

https://login:password@votreprojet

.03106/01/2026Module « Paradigmes de Programmation pour le Calcul Scientifique »











.03206/01/2026Module « Paradigmes de Programmation pour le Calcul Scientifique »





 



 

.03306/01/2026Module « Paradigmes de Programmation pour le Calcul Scientifique »







.03406/01/2026Module « Paradigmes de Programmation pour le Calcul Scientifique »

Paradigme Support dans Go Niveau de support Commentaires pour le calcul scientifique
Impératif Oui, natif Excellent • Boucles for, variables mutables, pointeurs, etc. C’est même le style dominant de Go.

Fonctionnel Oui, partiel mais très utilisable Bon

• Fonctions de première classe - Closures - Fonctions anonymes et littérales - Types de fonctions (func
comme type) - Méthodes comme valeurs de fonction

• Mais : pas de pattern matching, pas d’immutabilité forcée, pas de tail-call optimization, pas de
higher-order types (generics de fonctions limités avant Go 1.18, maintenant possibles mais verbeux).

• En pratique, on écrit très bien du code fonctionnel (map/filter/reduce avec des closures).

Orienté objet
Oui, mais sans héritage
classique

Très bon (style «
composition over
inheritance »)

• Méthodes sur n’importe quel type (struct, types de base…) –
• Embedding (composition + promotion de méthodes) –
• Interfaces implicites (duck typing) –

• Polymorphisme via interfaces. C’est l’un des points forts de Go pour le calcul scientifique : on peut
faire du code très propre avec des interfaces comme io.Reader, sort.Interface, ou des interfaces
personnalisées pour les tenseurs, matrices, etc.

Déclaratif Oui, dans une certaine mesure Moyen à bon

• Go n’est pas un langage déclaratif pur (comme Prolog ou SQL),
• mais : - Les interfaces sont déclaratives (« je veux quelque chose qui satisfait ça ») –
• Le système de concurrence (channels + select) est souvent décrit comme déclaratif –
• Les generics (depuis Go 1.18) permettent d’écrire du code plus déclaratif - On utilise beaucoup les

littéraux de struct et de slice/map qui sont déclaratives
• En calcul scientifique, on compense souvent avec des DSL embarqués (ex. gonum, expr via des libs

tierces).

Parallèle /
Concurrence

Oui, support de première
classe

Excellent

• Goroutines ultra-légères –
• Channels (communication sécurisée) - sync package (WaitGroup, Mutex, atomic, etc.) - go keyword +

select + sync/atomic + context
• C’est probablement le meilleur support natif de la concurrence parmi les langages systèmes

modernes.
• Très utile pour le calcul scientifique (parallélisationde boucles numériques, pipelines de traitement,

simulations Monte-Carlo, etc.).

.03506/01/2026Module « Paradigmes de Programmation pour le Calcul Scientifique »

Les 23 patterns décrits :

.03606/01/2026Module « Paradigmes de Programmation pour le Calcul Scientifique »

Typologie Nom du Design Pattern Ce qui doit être ajuster verbe
composition
sous jacente

mélange de
classes ?

Creational

Abstract Factory famille d'objets dépendants structure non

Builder
Comment créer un objet composite dont la structure du composite
est indépendante

liste non

Factory Method
Sous classe d'un objet qui est instanciée sans connaitre la classe
ancêtre (connaissance retardée)

filtrage vtab

Prototype Classe d'objet qui est instanciée grâce à un constructeur de copie copie=verbe liste non

Singleton La seule instance d'une classe copie=0=verbe non

Structural

Adapter accède à un objet en modifiant l'interface non
Bridge Fait l'implémentation d'un objet par découplage découplage non

Composite structure et composition d'un objet vue de manière uniforme arbre non

Decorator Responsabilité d'un objet sans héritage - ajout dynamique filtrage vtab

Facade Exposer une interface à un sous-système filtrage vtab
Flyweight cout de stockage d'un objet, partage de l'état état=verbe liste non

Proxy
Comment un objet est accédé, son emplacement (mémoire,
disque) - effet miroir

queue non

Behavioral

Chain of Responsibility Un objet qui peut répondre à une demande avec découpplage découplage queue filtrage vtab

Command
quand et comment une commande peut être faite - la commande
devient un objet

structure non

Interpreter grammaire et interprétation d'un objet non

Iterator se déplacer dans une structure d'objet sans en connaitre le détail liste filtrage vtab

Mediator Comment et avec quels objets sont décrites les interactions non

Memento
Quelles sont les informations privées qui sont stockée à part et
quand?

état=verbe
état
(queue=infinie)

non

Observer l'effectif des objets observés et quand s'effectue la mise à jour queue non

State les états d'un objet sont des variables, avec un handler() état=verbe structure filtrage vtab

Strategy un algorithme
extension=verb
e

structure filtrage vtab

Template Method les étapes/squelette d'un algorithme structure non

Visitor
les opérations élémentaires sont appliquées à un objet sans
modifier sa classe

liste non

.03706/01/2026Module « Paradigmes de Programmation pour le Calcul Scientifique »

.03806/01/2026Module « Paradigmes de Programmation pour le Calcul Scientifique »

.03906/01/2026Module « Paradigmes de Programmation pour le Calcul Scientifique »

Typologie Nom du Design Pattern Ce qui doit être ajusté verbe
composition
sous jacente

mélange de
classes

dynamique ?

Creational

Abstract Factory famille d'objets dépendants structure non

Builder
Comment créer un objet composite dont la structure du
composite est indépendante

liste non

Factory Method
Sous classe d'un objet qui est instanciée sans connaitre la
classe ancêtre (connaissance retardée)

filtrage vtab

Prototype
Classe d'objet qui est instanciée grâce à un constructeur de
copie

copie=verbe liste non

Singleton La seule instance d'une classe copie=0=verbe non

Structural

Adapter accède à un objet en modifiant l'interface non
Bridge Fait l'implémentation d'un objet par découplage découplage non

Composite structure et composition d'un objet vue de manière uniforme arbre non

Decorator Responsabilité d'un objet sans héritage - ajout dynamique filtrage vtab

Facade Exposer une interface à un sous-système filtrage vtab
Flyweight cout de stockage d'un objet, partage de l'état état=verbe liste non

Proxy
Comment un objet est accédé, son emplacement (mémoire,
disque) - effet miroir

queue non

Behavioral

Chain of Responsibility Un objet qui peut répondre à une demande avec découpplage découplage queue filtrage vtab

Command
quand et comment une commande peut être faite - la
commande devient un objet

structure non

Interpreter grammaire et interprétation d'un objet non

Iterator
se déplacer dans une structure d'objet sans en connaitre le
détail

liste filtrage vtab

Mediator Comment et avec quels objets sont décrites les interactions non

Memento
Quelles sont les informations privées qui sont stockée à part
et quand?

état=verbe
état
(queue=infinie)

non

Observer l'effectif des objets observés et quand s'effectue la mise à jour queue non

State les états d'un objet sont des variables état=verbe structure filtrage vtab

Strategy un algorithme indépendant du client
extension=verb
e

structure filtrage vtab

Template Method les étapes/squelette d'un algorithme structure non

Visitor
les opérations élémentaires sont appliquées à un objet sans
modifier sa classe

liste non

.04006/01/2026Module « Paradigmes de Programmation pour le Calcul Scientifique »



int main() {

Context* context = new Context();

context->setState(new ConcreteStateA());

context->Request();

context->setState(new ConcreteStateB());

context->Request();

}

https://godbolt.org/z/TxojreTaY

.04106/01/2026Module « Paradigmes de Programmation pour le Calcul Scientifique »



int main() {

AbstractClass *templateClass = new ConcreteClass();

templateClass->templateMethod();

}

https://godbolt.org/z/8vhM5PaoG

.04206/01/2026Module « Paradigmes de Programmation pour le Calcul Scientifique »



int main() {

Context context(new ConcreteStrategyB());

context.execute();

}

https://godbolt.org/z/zbaK3Wr5T

.04306/01/2026Module « Paradigmes de Programmation pour le Calcul Scientifique »





int main(int argc, char* argv[]) {

Creator *creator = new ConcreateCreator(ConcreateCreator::A);

Product *productA = creator->factoryMethod();

productA->somethingProduct();

Product *productB = creator->factoryMethod();

productB->somethingProduct();

}

https://godbolt.org/z/7WPYfzvsa

.04406/01/2026Module « Paradigmes de Programmation pour le Calcul Scientifique »



int main(int argc, char* argv[]) {

AbstractFactory* cf1 = new ConcreateFactory1();

AbstractProductA* productA1 = cf1->createProductA();

productA1->somethingProduct();

AbstractProductB* productB1 = cf1->createProductB();

productB1->somethingProduct();

AbstractFactory* cf2 = new ConcreateFactory2();

AbstractProductA* productA2 = cf2->createProductA();

productA2->somethingProduct();

AbstractProductB* productB2 = cf1->createProductB();

productB2->somethingProduct();
}

https://godbolt.org/z/hh5se4o7j

.04506/01/2026Module « Paradigmes de Programmation pour le Calcul Scientifique »



int main() {

ConcreteAggregate *concreteAggregate = new ConcreteAggregate(10);

concreteAggregate->addItem(123);
Iterator* it = concreteAggregate->createIterator();

for (; !it->isDone(); it->next()) {

std::cout << "Item value: " << it->currentItem() << std::endl;

}
}

Couteux car vtab pour
chaque enregistrement

https://godbolt.org/z/bqxMrsr6K

.04606/01/2026Module « Paradigmes de Programmation pour le Calcul Scientifique »





https://godbolt.org/z/qMKrsoY7M

.04706/01/2026Module « Paradigmes de Programmation pour le Calcul Scientifique »

int main() {

ConcreteObserver observer1(1000, 1);

ConcreteObserver observer2(2000, 2);
std::cout << "Observer1 state: " << observer1.getState() << std::endl;

std::cout << "Observer2 state: " << observer2.getState() << std::endl;

Subject* subject = new ConcreteSubject();

subject->attach(&observer1);

subject->attach(&observer2);

subject->setState(10);

subject->notify();

std::cout << "Observer1 state: " << observer1.getState() << std::endl;

std::cout << "Observer2 state: " << observer2.getState() << std::endl;

subject->detach(1);

subject->setState(100);

subject->notify();

std::cout << "Observer1 state: " << observer1.getState() << std::endl;

std::cout << "Observer2 state: " << observer2.getState() << std::endl;

}

