
JOUR / MOIS / ANNEE

#4
12/12/2025
jean-michel.batto@cea.fr

https://gogs.eldarsoft.com/M2_IHPS

.0212/12/2025Module « Paradigmes de Programmation pour le Calcul Scientifique »

2

Slurmctld
(backup)

Slurmctld
(master)

Slurmdbd
(backup)

Slurmdbd
(master)

slurmdslurmd

slurmd

slurmd

slurmd

slurmd

slurmdslurmd

slurmd

slurmd

MySQLSAN

Login Nodes Compute Nodes

Management Nodes (cluster) Management Nodes (cluster/site)

Workstations

.0312/12/2025Module « Paradigmes de Programmation pour le Calcul Scientifique »



.0412/12/2025Module « Paradigmes de Programmation pour le Calcul Scientifique »

 



.0512/12/2025Module « Paradigmes de Programmation pour le Calcul Scientifique »

 













docker compose up –d

Dans cette nouvelle version on ajoute 2 nœuds et 1

conteneur avec vscode



.0612/12/2025Module « Paradigmes de Programmation pour le Calcul Scientifique »

Ce que contient l’image jmbatto/m2chps-mpi41-slurm

Slurm (3 instances possibles du nœuds)
Démarrées avec Supervisord (et non avec tini)
plusieurs daemon sont démarrés
• sshd
• telegraf
• slurm (avec un choix selon le paramétrage

docker-compose)
• munge

.0712/12/2025Module « Paradigmes de Programmation pour le Calcul Scientifique »



sacctmgr show association -p user=root

scontrol show partition

scontrol show nodes

sinfo -Nel



sacctmgr --immediate add cluster name=linux



 Dans le répertoire /usr/local/var/mpishare faire

 git clone http://gogs.eldarsoft.com/M2_IHPS/glcs_slurm.git
Dans les répertoires test1/test2

mpicc –g3 –o elementary elementary.c

http://gogs.eldarsoft.com/M2_IHPS/glcs_slurm.git

.0812/12/2025Module « Paradigmes de Programmation pour le Calcul Scientifique »





salloc -n 2 mpirun ./elementary 

sbatch script0.sh

sacct -j %jobid obtenu au moment du sbatch%





sbatch -n 2 xxx.sh

squeue -s -j %jobid%

sacct -j%jobid%

squeue -s -i 30 -j %jobid%

sacct -j %jobid%

.0912/12/2025Module « Paradigmes de Programmation pour le Calcul Scientifique »











sbatch –n2 –N2 –exclusive xxx.sh

squeue -O jobid,state,qos,timeused

.01012/12/2025Module « Paradigmes de Programmation pour le Calcul Scientifique »



 

sacctmgr modify qos normal set MaxWall=00:00:02

.01112/12/2025Module « Paradigmes de Programmation pour le Calcul Scientifique »

//vérifie l'état de la queue

squeue

//puis allocation de 2 nœuds (il s’agit de c1 et c2)

salloc --time=05:00 -N 2

//vérification des noeuds

srun hosname

de la queue

squeue
//permet d'avoir les informations sur les jobs

sacct --format=JobID,elapsed,ncpus,ntasks,state,node

.01212/12/2025Module « Paradigmes de Programmation pour le Calcul Scientifique »









.01312/12/2025Module « Paradigmes de Programmation pour le Calcul Scientifique »

Champ Valeur Obtenue Signification et Contexte

NodeName c2 Le nom du nœud tel qu'il est défini dans la configuration Slurm (slurm.conf). C'est l'identifiant unique du nœud.

Arch x86_64 L'architecture du processeur du nœud. Important pour la compatibilité des travaux.

CoresPerSocket 1 Le nombre de cœurs par socket du processeur.

ThreadsPerCore 1 Le nombre de threads par cœur (indique si l'hyperthreading est activé ou non). Ici, il est désactivé ou non visible.

CPUTot 1 Le nombre total de CPU (cœurs logiques) disponibles sur ce nœud pour les travaux Slurm.

CPUAlloc 0 Le nombre de CPU actuellement alloués (utilisés) pour l'exécution des travaux.

CPUEfctv 1
Le nombre de CPU effectifs disponibles pour les travaux. Peut être inférieur à CPUTot si des ressources sont
réservées à l'OS ou à l'administration.

CPULoad 0.05
La charge moyenne actuelle du CPU (au moment de l'exécution de la commande). Une valeur faible indique que le
nœud est peu sollicité.

RealMemory 1000 La mémoire physique totale disponible sur le nœud, en Mo (MegaBytes).

AllocMem 0 La mémoire totale actuellement allouée pour l'exécution des travaux (en Mo).

FreeMem 2799
La mémoire libre vue par Slurm (en Mo). Note : La valeur peut être supérieure à RealMemory si le nœud n'est pas
configuré pour limiter l'utilisation de la mémoire.

TmpDisk 0 L'espace disque temporaire disponible pour les travaux Slurm (en Mo).

Partitions docker Les partitions de calcul auxquelles ce nœud est affecté. Les utilisateurs soumettent des travaux à ces partitions.

State IDLE
L'état actuel du nœud. IDLE signifie que le nœud est libre et prêt à accepter de nouveaux travaux. (Autres états
courants : ALLOCATED, DRAIN, DOWN).

Version 23.02.6 La version du démon Slurmd qui tourne sur ce nœud.

OS Linux 5.15...WSL2
Le système d'exploitation et la version du noyau. L'indication WSL2 confirme que ce nœud est virtualisé dans un
environnement Windows Subsystem for Linux 2.

BootTime 2025-12-10T12:51:03 L'heure de démarrage du nœud (système d'exploitation).

SlurmdStartTime 2025-12-10T15:15:26 L'heure de démarrage du démon Slurmd (le service Slurm sur ce nœud).

CfgTRES cpu=1,mem=1000M,billing=1
Les ressources agrégées (TRES) configurées pour ce nœud. Indique la capacité maximale (1 CPU, 1000 Mo de
mémoire).

AllocTRES (vide) Les ressources agrégées (TRES) actuellement allouées (vide car CPUAlloc=0).

AvailableFeatures (null)
Fonctionnalités spécifiques que le nœud pourrait offrir (GPU, haute-vitesse Interconnect, etc.) pour le ciblage des
travaux.

.01412/12/2025Module « Paradigmes de Programmation pour le Calcul Scientifique »





XcalableMP, XMP for short, is a directive-based language extension which
allows users to develop parallel programs for distributed memory systems
easily and to tune the performance by having minimal and simple notations.

Support typical parallelization under "global-view model"

XMP enables parallelizing the original sequential code using minimal
modification with simple directives.

Support coarray to use one-sided communication easily under "local-view
model"

Programmer can use coarray syntax in both XMP/Fortran and XMP/C. In
particular, XMP/Fortran is designed to be compatible with Coarray Fortran.

Combination of MPI and OpenMP

In order to call an MPI program from an XMP program, XMP provides the
MPI programming interface. Moreover, OpenMP directives can be combined into
XMP as a hybrid programming.

https://omni-compiler.org/

.01512/12/2025Module « Paradigmes de Programmation pour le Calcul Scientifique »





.01612/12/2025Module « Paradigmes de Programmation pour le Calcul Scientifique »

 Dans /YMLEnvironment/test-spawn-xmp  faire un make

 sudo curl --unix-socket /var/run/docker.sock

http://localhost/containers/json | jq -r

'map(.NetworkSettings[]."yml_mpinet"."IPAMConfig"."IPv4Addr

ess") []‘

mpirun --mca orte_base_help_aggregate 0 --mca btl_tcp_if_include
10.0.1.0/24 -n 4 -host c1,c2,c3,c4 worker_program

.01712/12/2025Module « Paradigmes de Programmation pour le Calcul Scientifique »

#include <stdio.h>

#include "Matrix.xmptype.h"

#pragma xmp nodes p(2,2)

#pragma xmp template t(0:3,0:3)

#pragma xmp distribute t(block,block) onto p

XMP_Matrix A[4][4];

#pragma xmp align A[i][j] with t(j,i)

XMP_Matrix B[4][4];

#pragma xmp align B[i][j] with t(j,i)

XMP_Matrix C[4][4];

#pragma xmp align C[i][j] with t(j,i)

int main(int argc, char ** argv){

int rank;

MPI_Barrier(MPI_COMM_WORLD);

MPI_Comm_rank(MPI_COMM_WORLD,&rank);

int i,j,n;

n=4;

fprintf(stderr,"rank = %d ; ",rank);

#pragma xmp loop (i,j) on t(j,i)

for (i=0;i<n;i++){

for(j=0;j<n;j++){

fprintf(stderr,"\n(%d, %d, %d) ",rank,i,j);

C[i][j] = 0;

A[i][j] = 1;

B[i][j] = i*n+j+1;

}

}

MPI_Barrier(MPI_COMM_WORLD);

}

.01812/12/2025Module « Paradigmes de Programmation pour le Calcul Scientifique »

// Allouer de la mémoire (dans cet exemple, pour une chaîne de caractères)

char* processor_name = malloc(256 * sizeof(char)); // Alloue de l'espace
pour le nom du processeur

int name_len;

MPI_Get_processor_name(processor_name, &name_len);

// Afficher le résultat

printf("Processeur %d - Nom : %s (Longueur du nom : %d)\n", rank,
processor_name, name_len);

// Libérer la mémoire allouée

free(processor_name);

.01912/12/2025Module « Paradigmes de Programmation pour le Calcul Scientifique »

.02012/12/2025Module « Paradigmes de Programmation pour le Calcul Scientifique »

.02112/12/2025Module « Paradigmes de Programmation pour le Calcul Scientifique »



environment:
- PASSWORD=1234

- DOCKER_USER=mpiuser

- CODER_ACCESS_URL="http://localhost:8081"

user: "1001:1001"



.02212/12/2025Module « Paradigmes de Programmation pour le Calcul Scientifique »



 



>sh certif.sh

ssh mpiuser@mpihead

//mpiuser : compte non-root associé au login des nœuds et head

.02312/12/2025Module « Paradigmes de Programmation pour le Calcul Scientifique »



.02412/12/2025Module « Paradigmes de Programmation pour le Calcul Scientifique »



.02512/12/2025Module « Paradigmes de Programmation pour le Calcul Scientifique »



.02612/12/2025Module « Paradigmes de Programmation pour le Calcul Scientifique »





.02712/12/2025Module « Paradigmes de Programmation pour le Calcul Scientifique »



.02812/12/2025Module « Paradigmes de Programmation pour le Calcul Scientifique »









.02912/12/2025Module « Paradigmes de Programmation pour le Calcul Scientifique »



Dans le dossier .ssh-source

sh install_clang_format_go.sh

 Installation du package et en plus il y a le compilateur go



.03012/12/2025Module « Paradigmes de Programmation pour le Calcul Scientifique »















.03112/12/2025Module « Paradigmes de Programmation pour le Calcul Scientifique »















.03212/12/2025Module « Paradigmes de Programmation pour le Calcul Scientifique »

















https://play.golang.org/p/oSDZYo0p0YC

.03312/12/2025Module « Paradigmes de Programmation pour le Calcul Scientifique »



func TestMemoCds(t *testing.T) {

var s memoCds

s.lenCds = 1

s.rawCds = "something"

s.reset()

fmt.Printf("s %+v\n", s)

s.appendR('A')

fmt.Printf("s %+v\n", s)

} https://play.golang.org/p/2RbN69wBMmS

https://play.golang.org/p/2RbN69wBMmS

.03412/12/2025Module « Paradigmes de Programmation pour le Calcul Scientifique »







func TestMemoCdsReset(t *testing.T) {

var s memoCds

s.lenCds = 1

s.rawCds = "something"

//s.reset()

if (s != memoCds{}) {

t.Error("s.reset doesn't work!")

} else {

t.Log("s.reset works")

}

}

.03512/12/2025Module « Paradigmes de Programmation pour le Calcul Scientifique »





module ExtractCDS

go 1.16

require (

configExtract v0.0.0-00010101000000-000000000000

gonum.org/v1/plot v0.10.0

)

replace configExtract => ./configExtract

VERSION

.03612/12/2025Module « Paradigmes de Programmation pour le Calcul Scientifique »





.03712/12/2025Module « Paradigmes de Programmation pour le Calcul Scientifique »

//Seq function for addition of two matrix

func addMat(mat1, mat2 []float64) {

n := len(mat1)

for i := 0; i < n; i++ {

mat1[i] = mat1[i] + mat2[i]

}

}

https://play.golang.org/p/7RWoK-gPjsT

https://play.golang.org/p/7RWoK-gPjsT

.03812/12/2025Module « Paradigmes de Programmation pour le Calcul Scientifique »



func addMatWorker(mat1, mat2 []float64) {

var wg sync.WaitGroup

n := len(mat1)

for i := 0; i < Workers; i++ {

wg.Add(1)

go func() {

defer wg.Done()

for i := 0; i < n; i++ {

mat1[i] = mat1[i] + mat2[i]

}

}()

}

wg.Wait()

}

https://play.golang.org/p/ZT7Ilhfxkqa

https://play.golang.org/p/ZT7Ilhfxkqa

.03912/12/2025Module « Paradigmes de Programmation pour le Calcul Scientifique »

func worker(id int, wg *sync.WaitGroup) {

defer wg.Done()

fmt.Printf("Worker %d starting\n", id)

time.Sleep(time.Second)

fmt.Printf("Worker %d done\n", id)

}

func main() {

var wg sync.WaitGroup

for i := 1; i <= 5; i++ {

wg.Add(1)

go worker(i, &wg)

}

//wg.Add(5)

wg.Wait()

}

https://play.golang.org/p/pdvJt72GkG2

https://play.golang.org/p/pdvJt72GkG2

.04012/12/2025Module « Paradigmes de Programmation pour le Calcul Scientifique »

On définit un pool de worker pour paralléliser le traitement

func worker(id int, wg *sync.WaitGroup, jobChannel <-chan Job,

resultChannel chan JobResult) {

defer wg.Done()

for job := range jobChannel {

resultChannel <- DistanceFasta36(job.idi, job.idj, job.b1, job.b2,

job.o)

}

}

.04112/12/2025Module « Paradigmes de Programmation pour le Calcul Scientifique »

type Job struct {

b1 string

b2 string

idi int

idj int

}

type JobResult struct {

d float64

idi int

idj int

}

func DistanceFasta36(i int, j int) (res JobResult) {

res.idi = i

res.idj = j

res.d = float64(i) + float64(j)

return

}

func worker(id int, wg *sync.WaitGroup, jobChannel <-chan Job,

resultChannel chan JobResult) {

defer wg.Done()

for job := range jobChannel {

resultChannel <- DistanceFasta36(job.idi, job.idj)

}

}

.04212/12/2025Module « Paradigmes de Programmation pour le Calcul Scientifique »

var countIteration int

func CalculateDistances(bacterias []string) [][]float64 {

n := len(bacterias)

var matrix = make([][]float64, n)

for rowid := range matrix {

matrix[rowid] = make([]float64, n)

}

var wg sync.WaitGroup

totalJobChannel := 0

for idi := range bacterias {

for idj := 0; idj <= idi; idj++ {

totalJobChannel++

}

}

jobChannel := make(chan Job)

jobResultChannel := make(chan JobResult, totalJobChannel)

const NumberOfWorkers = 8

wg.Add(NumberOfWorkers)

for i := 0; i < NumberOfWorkers; i++ {

go worker(i, &wg, jobChannel, jobResultChannel)

}

.04312/12/2025Module « Paradigmes de Programmation pour le Calcul Scientifique »

for idi := range bacterias {

for idj := 0; idj <= idi; idj++ { //=

jobChannel <- Job{bacterias[idj], bacterias[idi],

idi, idj}

countIteration++

}

}

close(jobChannel)

wg.Wait()

close(jobResultChannel)

// Receive job results from workers

for result := range jobResultChannel {

fmt.Printf("idi %d, idj %d, d %f\n", result.idi,

result.idj, result.d)

matrix[result.idi][result.idj] = result.d

matrix[result.idj][result.idi] = result.d

}

return matrix

}

https://play.golang.org/p/2AtBnDQVhIF

https://play.golang.org/p/2AtBnDQVhIF

.04412/12/2025Module « Paradigmes de Programmation pour le Calcul Scientifique »





func addMatWorker(mat1, mat2 []float64) {

var wg sync.WaitGroup

n := len(mat1)

for i := 0; i < Workers; i++ {

wg.Add(1)

go func() {

defer wg.Done()

for i := 0; i < n; i++ {

mat1[i] = mat1[i] + mat2[i]

}

}()

}

wg.Wait()

} https://play.golang.org/p/txazepceYys

https://play.golang.org/p/txazepceYys

.04512/12/2025Module « Paradigmes de Programmation pour le Calcul Scientifique »

 //compute indices (start, end) for threads

func GetInfoThread(startTotal, endTotal int, workers,

i int) (begin int, end int) {

workTotal := endTotal - startTotal

work := workTotal / workers

res := workTotal % workers

if i < res {

begin = ((work + 1) * i) + startTotal

end = begin + (work + 1)

} else {

begin = ((work+1)*res + (work)*(i-res)) +

startTotal

end = begin + (work)

}

return

}

https://play.golang.org/p/dXHSFrQIb0O

https://play.golang.org/p/dXHSFrQIb0O

.04612/12/2025Module « Paradigmes de Programmation pour le Calcul Scientifique »









func BenchmarkAddMat100(b *testing.B) {

for i := 0; i < b.N; i++ {

b.StopTimer()

rand.Seed(time.Now().UnixNano())

mat1 := createMat(100, rand.Float64())

mat2 := createMat(100, rand.Float64())

b.StartTimer()

addMat(mat1, mat2)

}

.04712/12/2025Module « Paradigmes de Programmation pour le Calcul Scientifique »



goos: windows

goarch: amd64

pkg: coursM2/cm6worker

BenchmarkAddMat100-8 5806759 202 ns/op





.04812/12/2025Module « Paradigmes de Programmation pour le Calcul Scientifique »



func benchmarkAddWorker(dim int, b *testing.B) {

for i := 0; i < b.N; i++ {

b.StopTimer()

rand.Seed(time.Now().UnixNano())

mat1 := createMat(dim, rand.Float64())

mat2 := createMat(dim, rand.Float64())

b.StartTimer()

addMatWorker(mat1, mat2)

}

}

.04912/12/2025Module « Paradigmes de Programmation pour le Calcul Scientifique »

BenchmarkAddMat100-8 5806759 202 ns/op

BenchmarkAddMatWorker100-8 359226 3806 ns/op

BenchmarkAdd1000-8 1528250 738 ns/op

BenchmarkAddWorker1000-8 231120 5096 ns/op

BenchmarkAdd10000-8 139465 8696 ns/op

BenchmarkAddWorker10000-8 87777 13494 ns/op

BenchmarkAdd20000-8 78723 16471 ns/op

BenchmarkAddWorker20000-8 48614 26756 ns/op

BenchmarkAdd50000-8 25012 45813 ns/op

BenchmarkAddWorker50000-8 31179 39287 ns/op

BenchmarkAdd100000-8 10100 113439 ns/op

BenchmarkAddWorker100000-8 16635 71449 ns/op

conclusions?

.05012/12/2025Module « Paradigmes de Programmation pour le Calcul Scientifique »









func BenchmarkAddMat100(b *testing.B) {

for i := 0; i < b.N; i++ {

b.StopTimer()

rand.Seed(time.Now().UnixNano())

mat1 := createMat(100, rand.Float64())

mat2 := createMat(100, rand.Float64())

b.StartTimer()

addMat(mat1, mat2)

}

}

.05112/12/2025Module « Paradigmes de Programmation pour le Calcul Scientifique »



goos: windows

goarch: amd64

pkg: coursM2/cm6worker

BenchmarkAddMat100-8 5806759 202 ns/op





.05212/12/2025Module « Paradigmes de Programmation pour le Calcul Scientifique »



func benchmarkAddWorker(dim int, b *testing.B) {

for i := 0; i < b.N; i++ {

b.StopTimer()

rand.Seed(time.Now().UnixNano())

mat1 := createMat(dim, rand.Float64())

mat2 := createMat(dim, rand.Float64())

b.StartTimer()

addMatWorker(mat1, mat2)

}

}

.05312/12/2025Module « Paradigmes de Programmation pour le Calcul Scientifique »

BenchmarkAddMat100-8 5806759 202 ns/op

BenchmarkAddMatWorker100-8 359226 3806 ns/op

BenchmarkAdd1000-8 1528250 738 ns/op

BenchmarkAddWorker1000-8 231120 5096 ns/op

BenchmarkAdd10000-8 139465 8696 ns/op

BenchmarkAddWorker10000-8 87777 13494 ns/op

BenchmarkAdd20000-8 78723 16471 ns/op

BenchmarkAddWorker20000-8 48614 26756 ns/op

BenchmarkAdd50000-8 25012 45813 ns/op

BenchmarkAddWorker50000-8 31179 39287 ns/op

BenchmarkAdd100000-8 10100 113439 ns/op

BenchmarkAddWorker100000-8 16635 71449 ns/op

conclusions?

.05412/12/2025Module « Paradigmes de Programmation pour le Calcul Scientifique »







.05512/12/2025Module « Paradigmes de Programmation pour le Calcul Scientifique »















.05612/12/2025Module « Paradigmes de Programmation pour le Calcul Scientifique »



main() F() G() H()

main() F() G() main() F() G() H() libre

16 kbytes

.05712/12/2025Module « Paradigmes de Programmation pour le Calcul Scientifique »





•



Pile

Tas

Code exe
0x0000

0x7fff

.05812/12/2025Module « Paradigmes de Programmation pour le Calcul Scientifique »



12,8 secondes

Le point chaud est la lecture du fichier

.05912/12/2025Module « Paradigmes de Programmation pour le Calcul Scientifique »





292 millisecondes

.06012/12/2025Module « Paradigmes de Programmation pour le Calcul Scientifique »





type packet struct {

targetData []byte

loaderData func(icount int) error

}



https://play.golang.org/p/BTrrZGypnD1

https://play.golang.org/p/BTrrZGypnD1

.06112/12/2025Module « Paradigmes de Programmation pour le Calcul Scientifique »

type packet struct {

targetData []byte

loaderData func(icount int) error

}

func NewPacket() (obj *packet) {

obj = &packet{}

obj.loaderData = func(icount int) (err

error) {

obj.targetData, err =

compute_arraybyte(int64(icount))

return

}

return

}

.06212/12/2025Module « Paradigmes de Programmation pour le Calcul Scientifique »



func NewPacketRandom() (obj *packet) {

obj = &packet{}

obj.loaderData = func(icount int) (err error) {

r := rand.New(rand.NewSource(99))

obj.targetData = make([]byte, icount)

r.Read(obj.targetData)

return

}

return

}

.06312/12/2025Module « Paradigmes de Programmation pour le Calcul Scientifique »









.06412/12/2025Module « Paradigmes de Programmation pour le Calcul Scientifique »



type packet struct {

targetData []byte

loaderData func(icount int) error

}

func NewPacket() (obj *packet) {

obj = &packet{}

obj.loaderData = func(icount int) (err error) {

obj.targetData, err = compute_arraybyte(int64(icount))

return

}

return

}

.06512/12/2025Module « Paradigmes de Programmation pour le Calcul Scientifique »

func (obj *packet) EraseAbove64() {

for i, a := range obj.targetData {

if a > 64 {

obj.targetData[i] = 0

}

}

return

}

targetData []byte
loaderData func(a string) error

Classe fille packetClasse ancêtre packet

targetData []byte
loaderData func(icount int) error

Spécialisation

.06612/12/2025Module « Paradigmes de Programmation pour le Calcul Scientifique »



type packetBetter struct {

*packet

packetLen func() int

}

func NewPacket2() (obj *packetBetter) {

obj = &packetBetter{packet: NewPacket()}

//obj.packet = NewPacket()

obj.packetLen = func() int {

return len(obj.targetData)

}

return

}

targetData []byte
loaderData func(a string) error
packetLen() int

Classe packetBetter

Encapsulation
*packet

.06712/12/2025Module « Paradigmes de Programmation pour le Calcul Scientifique »



type greatPacket interface {

CreatePacket()

EraseAbove64()

}

.06812/12/2025Module « Paradigmes de Programmation pour le Calcul Scientifique »

func (obj *packet) CreatePacket() {

if obj == nil {

obj = NewPacket()

}

}

func (obj *packetBetter) CreatePacket() {

if obj == nil {

obj = NewPacket2()

}

}

EraseAbove64()
CreatePacket() //newPacket

EraseAbove64() //hérite de packet
CreatePacket() //newPacket2

Classe packetBetterClasse packet

type packetBetter struct {

*packet

packetLen func() int

}

.06912/12/2025Module « Paradigmes de Programmation pour le Calcul Scientifique »

targetData []byte
loaderData func(a string) error

Héritage
Classe fille packetClasse ancêtre packet

EraseAbove64()
CreatePacket() //newPacket

targetData []byte
loaderData func(icount int) error

EraseAbove64() //hérite de packet
CreatePacket() //newPacket2

Champs

Méthodes publiques (par le type greatPacket interface{})

Sens de recherche des méthodes

Spécialisation

targetData []byte
loaderData func(a string) error
packetLen() int

Classe packetBetter

Encapsulation
*packet

https://play.golang.org/p/QDgpxMTlaWw

Classe packetBetter

https://play.golang.org/p/QDgpxMTlaWw

.07012/12/2025Module « Paradigmes de Programmation pour le Calcul Scientifique »



var _ greatPacket = (*packet)(nil)

var _ greatPacket = (*packetBetter)(nil)

.07112/12/2025Module « Paradigmes de Programmation pour le Calcul Scientifique »









.07212/12/2025Module « Paradigmes de Programmation pour le Calcul Scientifique »

.07312/12/2025Module « Paradigmes de Programmation pour le Calcul Scientifique »

.07412/12/2025Module « Paradigmes de Programmation pour le Calcul Scientifique »



https://play.golang.org/p/kWrnpnTa2nL

https://play.golang.org/p/kWrnpnTa2nL

.07512/12/2025Module « Paradigmes de Programmation pour le Calcul Scientifique »





L'objet possède une méthode "façade"

.07612/12/2025Module « Paradigmes de Programmation pour le Calcul Scientifique »



.07712/12/2025Module « Paradigmes de Programmation pour le Calcul Scientifique »







.07812/12/2025Module « Paradigmes de Programmation pour le Calcul Scientifique »



 





https://go.dev/src/runtime/

.07912/12/2025Module « Paradigmes de Programmation pour le Calcul Scientifique »

https://go.dev/src/runtime/

.08012/12/2025Module « Paradigmes de Programmation pour le Calcul Scientifique »





ASMObj

Golang Compile AST Obj

Link Binary

Link Binary

Évolution du loader de Plan9 qui sait optimiser les accès

.08112/12/2025Module « Paradigmes de Programmation pour le Calcul Scientifique »

























https://9p.io/sys/doc/asm.html
https://talks.golang.org/2016/asm.slide
https://godbolt.org/z/W1znE6TPf

.08212/12/2025Module « Paradigmes de Programmation pour le Calcul Scientifique »

func Sum(a []uint64) uint64 {

var sum uint64

for i := 0; i < len(a); i++ {

sum += a[i]

}

return sum

}

https://godbolt.org/z/YKsW9P61T : le code avec utilisation

https://godbolt.org/z/YKsW9P61T

.08312/12/2025Module « Paradigmes de Programmation pour le Calcul Scientifique »

SP+16 AXlongueur
SP+8 CXpointeur sur contenu
DX : contient l’avancement
BX : la somme // le résultat

LEA adresse DX+1 dans SI taille inc
CX+[DX*8]pointeur sur contenu avec incrément
Addition contenu vers BX
Déplacement mémoire

Positionnement résultat sur la pile

NOSPLIT= 4
SP = pseudo SP, Plan9
symbol+offset(SP)

.08412/12/2025Module « Paradigmes de Programmation pour le Calcul Scientifique »

en Golang

func DotProduct(a []int32, b []int32, N int32) (sum int32) {

//N := len(a)

for i := int32(0); i < N; i++ {

sum += a[i] * b[i]

}

return

}

en C

#include <stdint.h>

void dp_int32(int32_t *a, int32_t *b, int32_t *len,int32_t *res)
{

int32_t N = *len;

int32_t reslocal = 0;

for(int32_t i = 0; i < N; i++) {

reslocal = reslocal + a[i]*b[i];}

*res = reslocal; return ; }

.08512/12/2025Module « Paradigmes de Programmation pour le Calcul Scientifique »





 



https://godbolt.org/z/K7747xGEc

.08612/12/2025Module « Paradigmes de Programmation pour le Calcul Scientifique »

.08712/12/2025Module « Paradigmes de Programmation pour le Calcul Scientifique »



 











https://github.com/minio/asm2plan9s
https://github.com/klauspost/asmfmt
https://github.com/minio/c2goasm

.08812/12/2025Module « Paradigmes de Programmation pour le Calcul Scientifique »









_dp_int32(int32_t *a, int32_t *b, int32_t *len,int32_t *res)

.08912/12/2025Module « Paradigmes de Programmation pour le Calcul Scientifique »

#include <stdint.h>

void dp_int32(int32_t *a, int32_t *b, int32_t
*len,int32_t *res) {

int32_t N = *len;

int32_t reslocal = 0;

for(int32_t i = 0; i < N; i++) {

reslocal = reslocal + a[i]*b[i];}

*res = reslocal; return ; }

.09012/12/2025Module « Paradigmes de Programmation pour le Calcul Scientifique »

>dotproduct_amd64.go

package Dotproduct

import ("unsafe")

//go:noescape

func _dp_int32(a, b, N, res unsafe.Pointer)

func DotProduct(a []int32, b []int32, N int32) int32 {

var res int32

_dp_int32(unsafe.Pointer(&a[0]),unsafe.Pointer(&b[0]),

unsafe.Pointer(&N),unsafe.Pointer(&res))

return res

}

 Ajout du ‘_’ en préfix

 Utilisation de unsafe

 go:noescape  pas d’analyse d’échappement

.09112/12/2025Module « Paradigmes de Programmation pour le Calcul Scientifique »













.09212/12/2025Module « Paradigmes de Programmation pour le Calcul Scientifique »





LONG $0x646ffac5; WORD $0x1086// vmovdqu xmm4, oword [rsi + 4*rax]

LONG $0x6c6ffac5; WORD $0x2086// vmovdqu xmm5, oword [rsi + 4*rax + 16]

LONG $0x746ffac5; WORD $0x3086 // vmovdqu xmm6, oword [rsi + 4*rax + 32]

LONG $0x7c6ffac5; WORD $0x4086// vmovdqu xmm7, oword [rsi + 4*rax + 48]











https://github.com/Maratyszcza/PeachPy
https://github.com/mmcloughlin/avo

.09312/12/2025Module « Paradigmes de Programmation pour le Calcul Scientifique »

Meta ASM

.09412/12/2025Module « Paradigmes de Programmation pour le Calcul Scientifique »

go:generate go run asm.go -out add.s -stubs stub.go

.09512/12/2025Module « Paradigmes de Programmation pour le Calcul Scientifique »

//func _dp_int32(a *int32, b *int32, gN *int32, res *int32)

TEXT ·_dp_int32(SB),4, $0-32

MOVQ a+0(FP), DI

MOVQ b+8(FP), SI

MOVQ gN+16(FP), DX

MOVQ res+24(FP), CX

MOVQ (DX),R8 // mov r8d, dword [rdx]

CMPQ R8,$0 // test r8d, r8d

JLE LBB0_1

XORQ AX, AX // xor eax, eax

XORQ R9, R9 // xor r9d, r9d

LBB0_4:

MOVQ (SI)(AX*4),DX // mov edx, dword [rsi + 4*rax]

IMULQ (DI)(AX*4),DX // imul edx, dword [rdi + 4*rax]

ADDQ DX,R9 // add r9d, edx

INCQ AX // inc rax

CMPQ AX, R8 // cmp r8, rax

JNE LBB0_4

JMP LBB0_2

LBB0_1:

XORQ R9, R9 // xor r9d, r9d

LBB0_2:

MOVQ R9,(CX) // mov dword [rcx], r9d

RET

.09612/12/2025Module « Paradigmes de Programmation pour le Calcul Scientifique »

8 int32 : a[] 8 int32 : b[]

VMOVDQU VMOVDQU

Y1: 256 bits Y2 : 256 bits

VPMULLD

Y3

VPADDD

Y4

VMOVDQU  pile (32 bytes)

AVX : 2011
Attention : la taille a[]/b[] est un multiple de 8
Avec AVX512 – registres Z : 512 bits, VZEROUPPER

Vxxx : Vectorisé

.09712/12/2025Module « Paradigmes de Programmation pour le Calcul Scientifique »

TEXT ·_dpavx_int32(SB),4, $32-32

MOVQ a+0(FP), DI

MOVQ b+8(FP), SI

MOVQ gN+16(FP), CX

MOVQ res+24(FP), DX

MOVQ (CX),R8 // value of gN

MOVQ DX,R9 // return address

VPXOR Y4, Y4, Y4

XORQ AX,AX

start:

VMOVDQU (SI), Y1

VMOVDQU (DI), Y2

VPMULLD Y1, Y2, Y3

VPADDD Y3, Y4, Y4

ADDQ $32, SI

ADDQ $32, DI

ADDQ $8, AX

CMPL AX, R8

JNE start

VMOVDQU Y4, d0-32(SP) // vector result to stack

LEAQ d0-32(SP), BX

MOVQ $8, CX // array length 8 int32

XORQ SI, SI // clean SI

redux: //8 bytes => 8 int32 reduction to 1 int32

ADDL (BX), SI

ADDQ $4, BX // handle 4 int32

DECQ CX

JNZ redux

MOVL SI,(R9)

RET

_dpavx_int32(a *int32, b *int32, gN *int32, res *int32)
Attention : la taille a[]/b[] est un multiple de 8

.09812/12/2025Module « Paradigmes de Programmation pour le Calcul Scientifique »









https://godbolt.org/z/aW6dhrxqE

.09912/12/2025Module « Paradigmes de Programmation pour le Calcul Scientifique »

#include <smmintrin.h>

// the actual loop body itself is still fine for runtime-variable N

[[gnu::target("sse4.1")]] int32_t dp(int32_t a[], int32_t b[], int32_t N)

{

int32_t sum = 0;

__m128i temp_sum = _mm_setzero_si128();

for(int i=0;i<N;i=i+4){ // 4 int32 processed

//Load the 4 values from x

__m128i temp_1 = _mm_load_si128(reinterpret_cast<__m128i*>(&a[i])); // add cast

//Load the 4 values from y

__m128i temp_2 = _mm_load_si128(reinterpret_cast<__m128i*>(&b[i])); // add cast

//Multiply x[0] and y[0], x[1] and y[1] etc

__m128i temp_products = _mm_mullo_epi32(temp_1, temp_2);

//Sum temp_sum

temp_sum = _mm_add_epi32(temp_sum, temp_products);

}

// take horizontal sum of temp_sum - reduction

temp_sum = _mm_add_epi32(temp_sum, _mm_srli_si128(temp_sum, 8));

temp_sum= _mm_add_epi32(temp_sum, _mm_srli_si128(temp_sum, 4));

sum = _mm_cvtsi128_si32(temp_sum); // convert

// assign after the loop so compiler knows it doesn't alias

return sum;

}

https://godbolt.org/z/eab6Kzo5s
Attention : la taille a[]/b[] est un multiple de 4

https://godbolt.org/z/eab6Kzo5s

.0100JJ / MM / AAAAPrénom Nom / Titre du cours

.0100

Point d’optimisations possibles



 











