
JOUR / MOIS / ANNEE

#3
09/12/2025
jean-michel.batto@cea.fr

https://gogs.eldarsoft.com/M2_IHPS

.0209/12/2025Module « Paradigmes de Programmation pour le Calcul Scientifique »

●

https://slurm.schedmd.com/

.0309/12/2025Module « Paradigmes de Programmation pour le Calcul Scientifique »

●

– La programmation est faite à base de cartes perforées, regroupées par lot
(batch).

Les cartes les plus répandues ont 80 colonnes et 12 « lignes ».

– Les entrées sont elles aussi fournies au travers de cartes, puis de bandes
magnétiques.

– Les sorties sont réalisées sur cartes ou imprimantes.

.0409/12/2025Module « Paradigmes de Programmation pour le Calcul Scientifique »

●

– L’utilisation des machines est assurée par des opérateurs qui chargent les
paquets de cartes en machine suivant un planning pré-établi.

● → batch scheduling

– Les résultats, des « listings » papiers, sont fournis aux utilisateurs après
l’exécution de leurs « jobs ».

● Les « jobs » en erreur produisent une quantité pharamineuse de sorties

.0509/12/2025Module « Paradigmes de Programmation pour le Calcul Scientifique »

●

– Mode d’utilisation

● On planifie (schedule) l’exécution de jobs par paquets consécutifs de cartes
perforées.

● On génère des « listings » papiers.

– On passe un temps certain à mettre au point les « cartes » de ses « jobs » et à
en traiter les « listings »

●

– L’arrivée des transistors, des bandes magnétiques et des mémoires permet la
conception de nouvelles machines.

– Les « mainframes » apparaissent

● Les terminaux « graphiques » 80 colonnes font leur entrée.

– Des lecteurs de cartes restent associés…

● Pour réutiliser les codes…Et migrer vers des « scripts »

.0609/12/2025Module « Paradigmes de Programmation pour le Calcul Scientifique »

– Les scripts et programmes se numérisent

● Les cartes sont mises au placard après numérisation.

● Les données sont enregistrées sur bandes magnétiques et chargées/écrites depuis les
programmes.

– Les « jobs » sont planifiés par des opérateurs puis par des applications spécialisées.

● Les premiers « batch scheduler »…

– Mode d’utilisation

● « Soumission » de scripts batch par les utilisateurs (jobs).

● Ordonnancement automatique de l’exécution des jobs par une application dédiée.

● On génère des « listings » numérisés : sorties « écran » redirigées dans des fichiers.

– On gagne du temps dans la mise au point des scripts et programmes et le dépouillement
des résultats.

– On attend en fonction de l’importance du programme plus ou moins longtemps avant son
exécution.

.0709/12/2025Module « Paradigmes de Programmation pour le Calcul Scientifique »

– L’informatique se miniaturise et se démocratise par le canal des « personnal computeur »

– Qui reprennent les concepts des « mainframe » en associant directement le terminal à
l’ « unité centrale ».

– L’évolution est forte et rapide.

● Les interfaces graphiques

● font vite leur entrée

– Les systèmes d’exploitation permettent (Unix 1971, Linux 1991)

● Une interaction directe via des interfaces graphiques simplifiant l’utilisation des
machines

● Une interaction en mode ligne de commandes et/ou scripts.

– Ex : fichiers script « .bat » de Windows

● Les « scripts » restent exécutables en arrière plan (crontab) pour les traitements
« batch ».

.0809/12/2025Module « Paradigmes de Programmation pour le Calcul Scientifique »

– Les réseaux prennent de l’ampleur et permettent une
interconnexion performante d’unités individuelles type PC.

– Le HPC s’engouffre dans cette voie face à la diminution des
performances des approches monolithiques des « Mainframe ».

● Le nombre d’unités de calcul connectées ne cessera de croître...

.0909/12/2025Module « Paradigmes de Programmation pour le Calcul Scientifique »

– L’utilisation des clusters nécessite alors l’orchestration de plusieurs unités de calcul indépendantes.

● Notion de « jobs parallèles » exécutés sur des « systèmes distribués »

– Un ordonnanceur central est en charge de la répartition « spatiale » et « temporelle » des travaux.

● Dédier un certain nombre de « nœuds » pour une période de temps donnée à un « job ».

– Les jobs deviennent hétérogènes

● Une ou plusieurs sections parallèles permettant l’exécution de codes de calcul optimisés pour l’utilisation
de plusieurs unités de calcul

– Émergence du modèle MPI ! (CSP)

● Encapsulée(s) dans le déroulement classique du script « batch »

– L’ordonnancement se complexifie

● Différents besoins en terme de nombres d’unités de calcul dans les sections parallèles.

● Différentes localités.

– Les « batch scheduler » évoluent donc pour traiter efficacement ces « systèmes distribués »

● On parle maintenant de DRMS (Distributed Resource Management System) – PBS, Torque, SGE

● Concept de pilotage (Pilot-Job)

.01009/12/2025Module « Paradigmes de Programmation pour le Calcul Scientifique »

●

– Evolution des batchs scheduler « initiaux »

● Gérant principalement des « jobs » en time
slicing

→ composant « job manager »

● Prise en charge d’une quantité de ressources de
calcul grandissante et distribuée

→ composant « resource manager »

.01109/12/2025Module « Paradigmes de Programmation pour le Calcul Scientifique »

●

– Permettant aux utilisateurs d’enregistrer leurs
« jobs » pour exécution ultérieure

– Fournissant un statut des ressources disponibles
et en cours d’utilisation

– Fournissant un statut des jobs en cours de calcul
ou en attente de ressources

– Fournissant l’historique et les statistiques
d’utilisation des ressources

.01209/12/2025Module « Paradigmes de Programmation pour le Calcul Scientifique »

●

– Orchestrant la répartition des ressources entre les
« jobs » au cours du temps

– Orchestrant la mise en exécution, l’arrêt des jobs
ainsi que le suivi de la bonne utilisation et la
libération des ressources utilisées

.01309/12/2025Module « Paradigmes de Programmation pour le Calcul Scientifique »

●

– Généralement un par nœud de calcul

– Fournit l‘état du nœud au leader et permet les
intéractions directes avec celui-ci ou les
utilisateurs

– En charge du démarrage des exécutions de scripts
et ou d’applications pour les utilisateurs

– Assure le suivi de la bonne utilisation et la
libération des ressources utilisées

.01409/12/2025Module « Paradigmes de Programmation pour le Calcul Scientifique »

node1

node2

node3

node4

node5

Node6

node7

leader

User A User B

.01509/12/2025Module « Paradigmes de Programmation pour le Calcul Scientifique »

●

– Simple → Scalable

●

– Lawrence Livermore National Laboratory, Livermore, CA, USA

●

– Entreprise créé par les deux développeurs principaux

● Licence GPLv2

●

– AIX, Linux, BSD, …

●

– parmi les plus grands

.01609/12/2025Module « Paradigmes de Programmation pour le Calcul Scientifique »

●

– Permet la gestion de plusieurs dizaines de milliers
de nœuds

– Permet la gestion de plusieurs centaines de
milliers de cœurs de calcul

●

– Basé sur la notion de plugins pour spécialiser
différentes parties du produit en fonction des
besoins

.01709/12/2025Module « Paradigmes de Programmation pour le Calcul Scientifique »

●

– Composant « leader » (controler)

●

– Composant additionnel au «leader » pour la
persistence des données de comptabilité sur les
jobs et la gestion des utilisateurs et de leurs droits

● Backend MariaDB/Mysql nécessaire

●

– Composant « worker »

.01809/12/2025Module « Paradigmes de Programmation pour le Calcul Scientifique »

●

– « Pool » de nœuds utilisables au sein d’un même « job »

● Un nœud peut appartenir à plusieurs partitions

●

– Unité indépendante fournissant des ressources utilisables par les utilisateurs

● Sockets/Cores/Threads, Memory, GPUs, …

●

– Demande d’allocation de ressources dans une partition associée à un utilisateur

● Ensemble de ressources réparties sur des nœuds pour un temps défini

● Batch (script fourni) ou Interactif (shell)

●

– Demande de sous-allocation de ressources pour effectuer une tâche particulière

● Sous-ensemble de ressources parmi les ressources allouées pour le job associé

.01909/12/2025Module « Paradigmes de Programmation pour le Calcul Scientifique »

node1

node2

node3

node4

node5

Node6

node7

Partition prod Partition test

Job#125

Job#128

Job#127

Step#7

Step#1

Step#batch

.02009/12/2025Module « Paradigmes de Programmation pour le Calcul Scientifique »



Down Idle Alloc Completing

DrainingDrained

.02109/12/2025Module « Paradigmes de Programmation pour le Calcul Scientifique »



Pending Running Completing

Timed OutCompleted Node FailureCancelledFailed

.02209/12/2025Module « Paradigmes de Programmation pour le Calcul Scientifique »

22

Slurmctld
(backup)

Slurmctld
(master)

Slurmdbd
(backup)

Slurmdbd
(master)

slurmdslurmd

slurmd

slurmd

slurmd

slurmd

slurmdslurmd

slurmd

slurmd

MySQLSAN

Login Nodes Compute Nodes

Management Nodes (cluster) Management Nodes (cluster/site)

Workstations

.02309/12/2025Module « Paradigmes de Programmation pour le Calcul Scientifique »

– scontrol

● obtention & modification de la configuration

● obtention & modification des états des éléments (nodes, partitions, jobs, …)

– sacctmgr

● obtention & modification de la configuration des éléments stockés en BD (« users »,
« accounts », « qos » …)

– sinfo

● Information sur l’état des partitions

– squeue

● Information sur l’état des « jobs »

– sacct

● Information sur l’exécution de jobs en cours ou passés

– sstat

● Information détaillée sur l’exécution de jobs en cours

.02409/12/2025Module « Paradigmes de Programmation pour le Calcul Scientifique »

– sbatch

● « Soumission » d’une demande d’allocation de ressources détaillant les ressources nécessaires

● Fourniture du « script batch » associé

– Exécution du script sur les ressources disponibles sur le premier nœud « alloué »

● Mode « batch » (non interactif)

– L’utilisateur ne peut plus interagir directement avec son job et doit utiliser les commandes Slurm adhoc pour cela

– Les sorties stdout/stderr du script exécuté sont redirigés vers des fichiers (configurables)

– salloc

● « Soumission » d’une demande d’allocation de ressources détaillant les ressources nécessaires

● Lancement d’un shell interactif associé aux ressources allouées dès réalisation ou exécution locale d’un script passé en argument

● Permet l’exécution de commandes « srun » ultérieures pour créer des « jobstep » dans le job réalisé

– Facilite les tests en évitant l’attente « pending→running » inhérente à chaque soumission

– srun

● « Soumission » d’une demande d’allocation de ressources détaillant les ressources nécessaires

● Exécution d’un certain nombre de processus répartis sur les ressources allouées

– en fonction des détails fournis en argument

● Mode d’utilisation interactif (-s)

– L’utilisateur suit l’exécution du job dans son terminal et peut interagir avec lui (signaux, stdin, ...)

.02509/12/2025Module « Paradigmes de Programmation pour le Calcul Scientifique »

– sattach

● Permet de suivre et/ou d’interagir avec un job
batch à la manière d’un job interactif

– scancel

● Permet la transmission d’un signal à un job ou
jobstep

● Permet de demander la terminaison au plus tôt
d’un job ou jobstep

.02609/12/2025Module « Paradigmes de Programmation pour le Calcul Scientifique »

.02709/12/2025Module « Paradigmes de Programmation pour le Calcul Scientifique »



Log in

Log out

sbatch monscript

vim monscript

sinfo

squeue squeue sattach

scancel sacct

.02809/12/2025Module « Paradigmes de Programmation pour le Calcul Scientifique »



Jobs en attente par
Priorité

1

3

2

Ressources

Temps

3 1

2

.02909/12/2025Module « Paradigmes de Programmation pour le Calcul Scientifique »

– FIFO : First-In First-Out

● Premier arrivé, premier servi

– First-Fit

● Le premier qui tient dans l’espace disponible
rentre en machine

– FairSharing

● Basé sur une notion de parts de ressources
attribués aux différents utilisateurs

● Celui qui rentre est celui dont l’utilisation est la
plus inférieure à ce qu’il est autorisé à utiliser

.03009/12/2025Module « Paradigmes de Programmation pour le Calcul Scientifique »

– Aging

● Le plus ancien est le plus prioritaire

– Size based

● Le plus petit (ou le plus gros) d’abord

– QOS (Qualité de service)

● Différentes qualités de service avec différentes
restrictions

● Certaines plus prioritaires que d’autres.

– Backfilling

● Un job moins prioritaire est exécuté en premier si il ne
repousse pas la date de démarrage des plus prioritaires.

.03109/12/2025Module « Paradigmes de Programmation pour le Calcul Scientifique »

– Preemption

● Un job moins prioritaire laisse sa place à un plus
prioritaire lorsqu’il doit s’exécuter

– (suspension d’exécution ou remise en file d’attente
(queue))

– Best-effort

● Un job moins prioritaire est annulé si un plus prioritaire à
besoin des ressources

.03209/12/2025Module « Paradigmes de Programmation pour le Calcul Scientifique »

– Groupements hiérarchiques d’utilisateurs, notion d’ « account »

.03309/12/2025Module « Paradigmes de Programmation pour le Calcul Scientifique »

– L’écart entre part utilisable et utilisée des utilisateurs
pondère la valeur de chaque job permettant de revenir à
l’équilibre souhaité au plus vite

– Ex

● User-A share=0.3 usage=0.2, fact=0.6

● User-B share=0.2 usage=0.25, fact=0.45

.03409/12/2025Module « Paradigmes de Programmation pour le Calcul Scientifique »

– Chaque partition/qos dispose d’une priorité

– La valeur renvoyée correspond à la normalisation de la
valeur de la partition ciblée par rapport à la priorité
maximum observée

● Ex :

– partition-A priority=20, fact=0.2

– partition-B priority=100, fact=1.0

– Partition-C priority=70, fact=0.7

.03509/12/2025Module « Paradigmes de Programmation pour le Calcul Scientifique »

– Exemple de configuration

PriorityWeightQOS=100 000

PriorityWeightAge=10 000

PriorityWeightFairshare=10 000

PriorityWeightJobSize=0

PriorityWeightPartition=0
Priorité

Highest | Interactive Debug
Priority range : 100 000 – 110 000

High | Regression Tests
Priority range : 70 000 – 80 000

Norma | Batch & Interactive jobs
Priority range : 40 000 – 50 000

.03609/12/2025Module « Paradigmes de Programmation pour le Calcul Scientifique »

– Il peut être nécessaire de restreindre l’accès à certaines ressources à certains utilisateurs

– Il peut être nécessaire de restreindre la quantité disponible de ressources pour certains utilisateurs

– Il peut être nécessaire de restreindre le temps d’utilisation maximum possible en fonction des
utilisateurs

– Les partitions disposent d’un certain nombre de possibilités de restriction qui ne s’avèrent pas toujours
pratiques ou manquent de factorisation

– Les QOS permettent de corriger ce problème en fournissant des restrictions s’appliquant
orthogonalement aux partitions

● Une même partition peut être accédées via différentes QOS

– Les « associations » permettent de raffiner encore la granularité de configuration des limitations

● Une association peut correspondre à :

– Un cluster et un account

– Un cluster, un account et un utilisateur

– Un cluster, un account, un utilisateur et une partition

● Les restrictions s’appliquent hiérarchiquement sur les associations d’un utilisateur pour un account
donné

– Un utilisateur peut être associé à plusieurs account

.03709/12/2025Module « Paradigmes de Programmation pour le Calcul Scientifique »

– MaxJobsPerUser

● Quantité maximale de jobs en exécution

– MaxSubmitJobsPerUser

● Quantité maximale de jobs enregistrés

– MaxNodes

● Quantité maximale de nœuds utilisables dans un job

– MaxWall

● Temps d’exécution maximum d’un job

– MaxJobs

● Quantité maximale de jobs en exécution

– MaxSubmitJobs

● Quantité maximale de jobs enregistrés

– GrpJobs

● Quantité maximale de jobs en exécution incluant les jobs de toutes les associations filles

– GrpSubmitJobs : effectif max des jobs en attente

.03809/12/2025Module « Paradigmes de Programmation pour le Calcul Scientifique »

 













docker compose up –d



.03909/12/2025Module « Paradigmes de Programmation pour le Calcul Scientifique »

Ce que contient l’image jmbatto/m2chps-mpi41-slurm

Slurm (3 instances possibles du nœuds)
Démarrées avec Supervisord (et non avec tini)
plusieurs daemon sont démarrés
• sshd
• telegraf
• slurm (avec un choix selon le paramétrage

docker-compose)
• munge

.04009/12/2025Module « Paradigmes de Programmation pour le Calcul Scientifique »

.04109/12/2025Module « Paradigmes de Programmation pour le Calcul Scientifique »



sacctmgr show association -p user=root

scontrol show partition

scontrol show nodes

sinfo -Nel



sacctmgr --immediate add cluster name=linux



 Dans le répertoire /usr/local/var/mpishare faire

 git clone http://gogs.eldarsoft.com/M2_IHPS/glcs_slurm.git
Dans les répertoires test1/test2

mpicc –g3 –o elementary elementary.c

http://gogs.eldarsoft.com/M2_IHPS/glcs_slurm.git

.04209/12/2025Module « Paradigmes de Programmation pour le Calcul Scientifique »





salloc -n 2 mpirun ./elementary 

sbatch script0.sh

sacct -j %jobid obtenu au moment du sbatch%





sbatch -n 2 xxx.sh

squeue -s -j %jobid%

sacct -j%jobid%

squeue -s -i 30 -j %jobid%

sacct -j %jobid%

.04309/12/2025Module « Paradigmes de Programmation pour le Calcul Scientifique »











sbatch –n2 –N2 –exclusive xxx.sh

squeue -O jobid,state,qos,timeused

.04409/12/2025Module « Paradigmes de Programmation pour le Calcul Scientifique »



 

sacctmgr modify qos normal set MaxWall=00:00:02

.04509/12/2025Module « Paradigmes de Programmation pour le Calcul Scientifique »









Le langage Go

•









•

–

•

–

•

–

•

–

–

–

Typologie d'un langage

.04809/12/2025Module « Paradigmes de Programmation pour le Calcul Scientifique »

•2009 : Go 1.0 – avec un compilateur
•Go : 25 mots clés / pour ANSI C : 32 / pour Brainfuck : 8
•Approche CSP  les mêmes pbs que ceux du HPC
•Langage Opensource
Licence du langage : type BSD

•Aujourd'hui 3 compilateurs : llgo (llvm), gcc, gc
•Processeurs cibles
ARM, ARM64, x86-32 et AMD64, Mips32, Mips64, s390, PPC64, RiscV, loongarch64



.04909/12/2025Module « Paradigmes de Programmation pour le Calcul Scientifique »





門

https://play.golang.org/p/XEVoMmK5mXw

.05009/12/2025Module « Paradigmes de Programmation pour le Calcul Scientifique »







.05109/12/2025Module « Paradigmes de Programmation pour le Calcul Scientifique »





.05209/12/2025Module « Paradigmes de Programmation pour le Calcul Scientifique »

 

https://play.golang.org/p/jXS5Rn0U8UR

https://play.golang.org/p/jXS5Rn0U8UR

.05309/12/2025Module « Paradigmes de Programmation pour le Calcul Scientifique »

https://play.golang.org/p/1eyKjt-3lkr

.05409/12/2025Module « Paradigmes de Programmation pour le Calcul Scientifique »













.05509/12/2025Module « Paradigmes de Programmation pour le Calcul Scientifique »





https://play.golang.org/p/geaxSJGnYmR

https://play.golang.org/p/geaxSJGnYmR

.05609/12/2025Module « Paradigmes de Programmation pour le Calcul Scientifique »











https://play.golang.org/p/1J-Hzb0PAga

https://play.golang.org/p/61F0QcH3h4d

https://play.golang.org/p/1J-Hzb0PAga
https://play.golang.org/p/61F0QcH3h4d

.05709/12/2025Module « Paradigmes de Programmation pour le Calcul Scientifique »





























































.05809/12/2025Module « Paradigmes de Programmation pour le Calcul Scientifique »

















.05909/12/2025Module « Paradigmes de Programmation pour le Calcul Scientifique »

































Création d’un objet : struct

https://play.golang.org/p/AOqCFJRWERq

Pb! Quelle est la
bonne conversion?

https://fr.wikibooks.org/wiki/Les_ASCII_de_0_%C3%A0_127/La_table_ASCII

https://oeis.org/A001622

https://play.golang.org/p/AOqCFJRWERq
https://fr.wikibooks.org/wiki/Les_ASCII_de_0_%C3%A0_127/La_table_ASCII
https://oeis.org/A001622

.06009/12/2025Module « Paradigmes de Programmation pour le Calcul Scientifique »







.06109/12/2025Module « Paradigmes de Programmation pour le Calcul Scientifique »









.06209/12/2025Module « Paradigmes de Programmation pour le Calcul Scientifique »

https://play.golang.org/p/4uo6CiZSINC

Comment faire sans le «defer » ?

https://play.golang.org/p/4uo6CiZSINC

.06309/12/2025Module « Paradigmes de Programmation pour le Calcul Scientifique »

.06409/12/2025Module « Paradigmes de Programmation pour le Calcul Scientifique »

https://play.golang.org/p/ba3O1Ev42yt

https://play.golang.org/p/ba3O1Ev42yt

.06509/12/2025Module « Paradigmes de Programmation pour le Calcul Scientifique »

.06609/12/2025Module « Paradigmes de Programmation pour le Calcul Scientifique »

https://play.golang.org/p/NYYyxDXaHmF

https://play.golang.org/p/NYYyxDXaHmF

.06709/12/2025Module « Paradigmes de Programmation pour le Calcul Scientifique »





























































.06809/12/2025Module « Paradigmes de Programmation pour le Calcul Scientifique »

func test_fallthrough() {

i := 45

switch {

case i < 10:

fmt.Println("i plus petit que 10")

fallthrough

case i < 50:

fmt.Println("i plus petit que 50")

fallthrough

fmt.Println("bug")

case i < 100:

fmt.Println("i plus petit que 100")

}

}

Fallthrough = cascade d’exécution

https://play.golang.org/p/I2i0vZtItNP

https://play.golang.org/p/I2i0vZtItNP

.06909/12/2025Module « Paradigmes de Programmation pour le Calcul Scientifique »







.07009/12/2025Module « Paradigmes de Programmation pour le Calcul Scientifique »

.07109/12/2025Module « Paradigmes de Programmation pour le Calcul Scientifique »















.07209/12/2025Module « Paradigmes de Programmation pour le Calcul Scientifique »



 

 

.07309/12/2025Module « Paradigmes de Programmation pour le Calcul Scientifique »







.07409/12/2025Module « Paradigmes de Programmation pour le Calcul Scientifique »

https://play.golang.org/p/q-ugPxPk8d2

.07509/12/2025Module « Paradigmes de Programmation pour le Calcul Scientifique »



func test_chan() {

ch := make(chan int)

fmt.Println("Sending value 1 to channel")

go send(ch, 1)

fmt.Println("Receiving from channel")

go receive(ch)

time.Sleep(time.Second * 1)

}

func send(ch chan int, i int) {

ch <- i

}

func receive(ch chan int) {

val := <-ch

fmt.Printf("Value Received=%d in receive

function\n", val)

}

https://play.golang.org/p/QxzMmS5QZXr

https://play.golang.org/p/QxzMmS5QZXr

.07609/12/2025Module « Paradigmes de Programmation pour le Calcul Scientifique »



func test_buffered_chan() {

ch := make(chan int, 1)

ch <- 1

fmt.Println("Sending value to channnel complete")

val := <-ch

fmt.Printf("Receiving Value from channel finished. Value received: %d\n", val)

}

https://play.golang.org/p/esBAGSAaJ5g

https://play.golang.org/p/esBAGSAaJ5g

.07709/12/2025Module « Paradigmes de Programmation pour le Calcul Scientifique »



func write_example() {

ch := make(chan int, 3)

process(ch)

fmt.Println(<-ch)

}

func process(chWrite chan<- int) {

chWrite <- 2

//s := <-chWrite

}

https://play.golang.org/p/TYjoCF4D0HT

https://play.golang.org/p/TYjoCF4D0HT

.07809/12/2025Module « Paradigmes de Programmation pour le Calcul Scientifique »



func read_example() {

ch := make(chan int, 3)

ch <- 2

process(ch)

fmt.Println()

}

func process(chRead <-chan int) {

s := <-chRead

fmt.Println(s)

//chRead <- 2

}

https://play.golang.org/p/yr8TU2hdgxY

https://play.golang.org/p/yr8TU2hdgxY

.07909/12/2025Module « Paradigmes de Programmation pour le Calcul Scientifique »



func cap_len_example() {

ch := make(chan int, 3)

ch <- 5

fmt.Printf("Len: %d, Cap %d\n\n", len(ch), cap(ch))

ch <- 6

fmt.Printf("Len: %d, Cap %d\n\n", len(ch), cap(ch))

ch <- 7

fmt.Printf("Len: %d, Cap %d\n\n", len(ch), cap(ch))

}

https://play.golang.org/p/ktkstsrmecB

https://play.golang.org/p/ktkstsrmecB

.08009/12/2025Module « Paradigmes de Programmation pour le Calcul Scientifique »

func test_range() {

ch := make(chan int)

go sum(ch)

ch <- 2

ch <- 2

ch <- 2

close(ch)

time.Sleep(time.Second * 1)

}

func sum(chRead <-chan int) {

sum := 0

for a := range chRead {

sum += a

}

fmt.Printf("Sum: %d\n", sum)

}

Range permet
de défiler un
chan

https://play.golang.org/p/wvNlG5cax_z

https://play.golang.org/p/wvNlG5cax_z

.08109/12/2025Module « Paradigmes de Programmation pour le Calcul Scientifique »

func process_ch() {

ch := make(chan int, 3)

ch <- 2

ch <- 2

ch <- 2

close(ch)

sum(ch)

time.Sleep(time.Second * 1)

}

func sum(ch chan int) {

sum := 0

for val := range ch {

sum += val

}

fmt.Printf("Sum: %d\n", sum)

}

Fermeture du channel

https://play.golang.org/p/Uvjas1wNQ61

https://play.golang.org/p/Uvjas1wNQ61

.08209/12/2025Module « Paradigmes de Programmation pour le Calcul Scientifique »

func test_status() {

ch := make(chan int, 1)

ch <- 2

val, ok := <-ch

fmt.Printf("Val: %d OK: %t\n", val, ok)

close(ch)

val, ok = <-ch

fmt.Printf("Val: %d OK: %t\n", val, ok)

}

https://play.golang.org/p/MNs0GPJeKkt

https://play.golang.org/p/MNs0GPJeKkt

.08309/12/2025Module « Paradigmes de Programmation pour le Calcul Scientifique »

Commande Réaction pour
channel sans
buffer

Réaction pour
channel avec
buffer

channel fermé channel assigné
à nil

chan <-
// écrire

bloquant si
pas de lecteur
sinon succès

bloque si le
channel est plein

panic bloque
indéfiniment

<- chan
// lire

bloque s’il n’y
a pas
d’écrivain

bloque si le
channel est vide

récupère le contenu
du channel ou alors
un type vide

bloque
indéfiniment

len()
//effectif des msg
restant

0 effectif des msg
restant

0 pour les channel
sans buffer – sinon
effectif msg

0

cap()
//capacité

0 capacité du
channel

0 pour les channel
sans buffer – sinon
capacité msg

0

close() Succès succès panic panic

.08409/12/2025Module « Paradigmes de Programmation pour le Calcul Scientifique »

const quit_value=999

func fibonacci(cWrite, cmdRead chan int) {

fmt.Println("fibonacci started")

x, y := 0, 1

for {

fmt.Printf("task fibo x = %d\n", x)

select {

case cWrite <- x:

x, y = y, x+y

case cmd_value := <-cmdRead:

fmt.Printf("quit_value = %d\n", cmd_value)

return

//default : fmt.Printf(“zzz\n")

}}}

func main() {

c := make(chan int)

q := make(chan int)

go func() {

fmt.Println("Goroutine started")

for i := 0; i < 5; i++ {

value := <-c

fmt.Printf("main received %d\n", value)

}

q <- quit_value

}()

//close(c)

fibonacci(c, q)}

Permet de filtrer le msg

https://play.golang.org/p/r92J8kn-rfE

Le select est bloquant,
sauf avec default

https://play.golang.org/p/r92J8kn-rfE

.08509/12/2025Module « Paradigmes de Programmation pour le Calcul Scientifique »





























































.08609/12/2025Module « Paradigmes de Programmation pour le Calcul Scientifique »















.08709/12/2025Module « Paradigmes de Programmation pour le Calcul Scientifique »

















https://play.golang.org/p/oSDZYo0p0YC

.08809/12/2025Module « Paradigmes de Programmation pour le Calcul Scientifique »



func TestMemoCds(t *testing.T) {

var s memoCds

s.lenCds = 1

s.rawCds = "something"

s.reset()

fmt.Printf("s %+v\n", s)

s.appendR('A')

fmt.Printf("s %+v\n", s)

} https://play.golang.org/p/2RbN69wBMmS

https://play.golang.org/p/2RbN69wBMmS

.08909/12/2025Module « Paradigmes de Programmation pour le Calcul Scientifique »







func TestMemoCdsReset(t *testing.T) {

var s memoCds

s.lenCds = 1

s.rawCds = "something"

//s.reset()

if (s != memoCds{}) {

t.Error("s.reset doesn't work!")

} else {

t.Log("s.reset works")

}

}

.09009/12/2025Module « Paradigmes de Programmation pour le Calcul Scientifique »





module ExtractCDS

go 1.16

require (

configExtract v0.0.0-00010101000000-000000000000

gonum.org/v1/plot v0.10.0

)

replace configExtract => ./configExtract

VERSION

