#3

09/12/2025
jean-michel.batto@cea.fr

https://gogs.eldarsoft.com/M2_IHPS

= CUL
o e UTE

& A)
‘%‘;—\;’ i RFORMAN

Module « Paradigmes de Programmation pour le Calcul Scientifique » université pARIS-SACLAY 09/12/2025

https://slurm.schedmd.com/

Tat e LCUL
255 (0 HAUTE
- N

Wa@os DERFORMAN
{ULATION

. Premieres générations d'ordinateurs

— |La programmation est faite a base de cartes perforées, regroupées par lot
(batch).

Les cartes les plus répandues ont 80 colonnes et 12 « lignes ».

= | es entrees sont elles aussi fournies au travers de cartes, puis de bandes
magnétiques.

= | es sorties sont réalisées sur cartes ou imprimantes.

DR N
Module « Paradigmes de Programmation pour le Calcul Scientifique » universite paris-sACLAY 09/12/2025 .03

5\‘&
ot
| g g!ﬂy.

CUL
UTE
RFORMAN
ULATION

. Premieres générations d'ordinateurs
= | “utilisation des machines est assurée par des opérateurs qui chargent les
paquets de cartes en machine suivant un planning pré-étabili.

8
h

. = batch scheduling

— | es résultats, des « listings » papiers, sont fournis aux utilisateurs apres
I'execution de leurs « jobs ».

. Les « jobs » en erreur produisent une quantité pharamineuse de sorties

Module « Paradigmes de Programmation pour le Calcul Scientifique » universite paris-sSACLAY 09/12/2025

Tat e LCUL
255 (0 HAUTE
- N

Wo@o DERFORMAN
{ULATION

. Premieres générations d'ordinateurs
- Mode d’utilisation

. On planifie (schedule) I'exécution de jobs par paquets consécutifs de cartes
perforées.

. On génere des « listings » papiers.

— On passe un temps certain a mettre au point les « cartes » de ses « jobs » et a
en traiter les « listings »

. Lémergence de linformatigue moderne
— | "arrivee des transistors, des bandes magnétiques et des mémoires permet la
conception de nouvelles machines.

= Les « mainframes » apparaissent
. Les terminaux « graphiques » 80 colonnes font leur entrée.
— Des lecteurs de cartes restent associés...

. Pour reutiliser les codes...Et migrer vers des « scripts »

Module « Paradigmes de Programmation pour le Calcul Scientifique » universite paris-sACLAY 09/12/2025

" =W | '¢re « mainframe » (70’s)

V& < MULATION

et programmes se numérisent
cartes sont mises au placard apres numérisation.

S données sont enregistrées sur bandes magnétiques et chargées/écrites depuis
ogrammes.

« jobs » sont planifiés par des opérateurs puis par des applications spécialisées.
F

HIGH Preemplicn Task Cormpletion

Les premiers « batch scheduler »... /
Task
’ g . Priority Time Slice T
de d’utilisation 1 I a—

|
. | Tasx1 | Task2 | Task3 | T1| | T1] Task2 |=4p=

« Soumission » de scripts batch par les utilisateurs (jobs).
Tirmea

Ordonnancement automatique de I'exécution des jobs par une application dediee.

)n genere des « listings » numérisés : sorties « écran » redirigées dans des fichiers

ghe du temps dans la mise au point des scripts et programmes et le dépouille
ultats.

d en fonction de I'importance du programme plus ou moins longtemps ave

Module « Paradigmes de Programmation pour le Calcul Scientifique » universite parRIS-SACLAY 09/12/2025

o L'eére « PC » (80’s - 2000’s)

{ULATION

= L'informatique se miniaturise et se démocratise par le canal des « personnal computeur »

= Qui reprennent les concepts des « mainframe » en associant directement le terminal a
I « unité centrale ».

— |'évolution est forte et rapide.
. Les interfaces graphiques
. font vite leur entrée
= ['es systemes d’'exploitation permettent (Unix 1971, Linux 1991)

. Une interaction directe via des interfaces graphiques simplifiant |I'utilisation des
machines

. Une interaction en mode ligne de commandes et/ou scripts.
— EX : fichiers script « .bat » de Windows

. Les « scripts » restent exécutables en arriere plan (crontab) pour les traitements
« batch ».

Module « Paradigmes de Programmation pour le Calcul Scientifique » universite paris-sACLAY 09/12/2025

L'émergence des clusters (90’s)

aux prennent de I'ampleur et permettent une
)nnexion performante d’unités individuelles type PC

C s’engouffre dans cette voie face a la diminution de
ormances des approches monolithiques des « Mainframe

e nombre d’'unités de calcul connectées ne cessera de crc

1 Eflop/s
100 Pflop/s

10 Pflop/

1 Pflop/s
100 Tflop/s

10 Tflop/s

1 Tflop/s
100 Gflop/s

10 Gflop/s

1 Gflop/
100 Mflop/s

Module « Paradigmes de Programmation pour le Calcul Scientifique » universite paris-sacLAY 09/12/2025

LCUL

nwes | 'eémergence des clusters (90’s)

{ULATION

= | "utilisation des clusters nécessite alors I'orchestration de plusieurs unités de calcul indépendantes.
. Notion de « jobs paralleles » exécutés sur des « systemes distribués »

= Un ordonnanceur central est en charge de la répartition « spatiale » et « temporelle » des travaux.
. Dédier un certain nombre de « nceuds » pour une période de temps donnée a un « job ».

— Les jobs deviennent hétérogenes

. Une ou plusieurs sections paralleles permettant I'exécution de codes de calcul optimisés pour |"utiliSation
de plusieurs unités de calcul

_ Emergence du modéle MPI ! (CSP)
. Encapsuléee(s) dans le déroulement classique du script « batch »
— L'ordonnancement se complexifie
. Differents besoins en terme de nombres d’unités de calcul dans les sections paralleles.
. Différentes localités.
= | es « batch scheduler » évoluent donc pour traiter efficacement ces « systemes distribuées »

. On parle maintenant de DRMS (Distributed Resource Management System) - PBS, Torque, SGE

Module « Paradigmes de Programmation pour le Calcul Scientifique » universite paris-sACLAY 09/12/2025

RFORMA
LATIO

%.ag«z.,, ute.

Principe d’'un DRMS

. Rappels
— Evolution des batchs scheduler « initiaux »

. Gérant principalement des « jobs » en time
slicing
- composant « job manager »

. Prise en charge d’'une quantité de ressources de
calcul grandissante et distribuée

= composant « resource manager »

Module « Paradigmes de Programmation pour le Calcul Scientifique » universite paris-sACLAY 09/12/2025

Usage d’'un DRMS

. Repose géenéralement sur un composant leader central
- Permettant aux utilisateurs d’enreqistrer leurs
« Jobs » pour exécution ultérieure

— Fournissant un statut des ressources disponibles
et en cours d’utilisation

— Fournissant un statut des jobs en cours de calcul
OU en attente de ressources

= Fournissant |'historigue et les statistiques
d'utilisation des ressources

Module « Paradigmes de Programmation pour le Calcul Scientifique » universite paris-sACLAY 09/12/2025

- LCUL
\UTE

ja 40
N " PERFORMAN
‘ {ULATION

TS
o

Architecture d’'un DRMS

. Repose géenéralement sur un composant leader central
~ Orchestrant la répartition des ressources entre |les
« Jobs » au cours du temps

= Orchestrant la mise en exécution, |I'arrét des jobs
alnsi que le suivi de la bonne utilisation et la
liIbération des ressources utilisées

Module « Paradigmes de Programmation pour le Calcul Scientifique » universite paris-sACLAY 09/12/2025

,;‘ﬂ_ :‘;(1;. urs

W@, ©CRFORMA
e &;V/ ULATION

Architecture d’'un DRMS

. Repose géenéralement sur un ensemble de workers distribués
= Genéeralement un par noeud de calcul

= Fournit |‘état du noeud au leader et permet les
Intéractions directes avec celui-ci ou les
utilisateurs

~ En charge du démarrage des exécutions de scripts
et ou d'applications pour les utilisateurs

— Assure le suivi de la bonne utilisation et la
libération des ressources utilisées

Module « Paradigmes de Programmation pour le Calcul Scientifique » universite paris-sACLAY 09/12/2025

w o Architecture DRMS (Pilot-Job)

.
.
.
.
.
.
.
.
.
.
.
¢
’\
"
.
e
AERY

L)
PrLs .
....
.
-
-
-
-
-
.-
e
.-

.
-
.-

.-
-

nodel *. node3 node5 node?7

node2 node4 Nodeb6

Module « Paradigmes de Programmation pour le Calcul Scientifique » universite paris-sSACLAY 09/12/2025

S, cALCUL
%{Z UTE

o
X)’\«jﬁ RFORMAN

ULATION

Un DRMS : SLURM

> Simple Linux Utility for Resource Management
- Simple - Scalable

Projet demarré au LLNL en 2002
=l awrence Livermore National Laboratory, Livermore, CA, USA

Continué par SchedMD depuis 2010
= Entreprise créeeé par les deux développeurs principaux

Produit OpenSource écrit en C : Licence GPLv2
giilisable sur la majorité des environnements de type UNIX

- AlX, Linux, BSD, ...

Uiilisé sur une multitude de grands calculateurs a travers le monde 5 I U rm

- parmi les plus grands LorkioadinE

Module « Paradigmes de Programmation pour le Calcul Scientifique » universite paris-sACLAY 09/12/2025

. Scalable
= Permet |la gestion de plusieurs dizaines de milliers
de noceuds

= Permet la gestion de plusieurs centaines de
milliers de coeurs de calcul

. Modulaire
= Base sur la notion de plugins pour spécialiser
differentes parties du produit en fonction des
besoins

Module « Paradigmes de Programmation pour le Calcul Scientifique » universite paris-sACLAY 09/12/2025

. Slurmcild
= Composant « leader » (controler)

. Slurmdbd
= Composant additionnel au «leader » pour la
persistence des données de comptabilité sur les
Jobs et la gestion des utilisateurs et de leurs droits

. Backend MariaDB/Mysql nécessaire

. slurmd
- Composant « worker »

Module « Paradigmes de Programmation pour le Calcul Scientifique » universite paris-sACLAY 09/12/2025

UTE
?FORMAN
{ULATION

Concepts
. Partition

=« Pool » de noeuds utilisables au sein d’'un méme « job »

Un nceud peut appartenir a plusieurs partitions

. Node
= Unite independante fournissant des ressources utilisables par les utilisateurs

. Sockets/Cores/Threads, Memory, GPUs,

. Job
= Pemande d’allocation de ressources dans une partition associée a un utilisateur

. Ensemble de ressources réparties sur des noeuds pour un temps déefini

. Batch (script fourni) ou Interactif (shell)

. Jobstep
= Demande de sous-allocation de ressources pour effectuer une tache particuliere

. Sous-ensemble de ressources parmi les ressources allouées pour le job associe

Module « Paradigmes de Programmation pour le Calcul Scientifique » universite paris-sACLAY 09/12/2025

_V)':-,:;..; CUL [[]
-~ rmowes Articulation
°§;§, % PERFORMAN

W g JLATIO!

nodel node3

Step#1

node?2 node4

Step#7
Job#125

Job#128 Nodeb

Step#batch
Job#127

Partition prod

Module « Paradigmes de Programmation pour le Calcul Scientifique » université pARIS-SACLAY 09/12/2025

0 CUL
Wage) HAUTE

NS e RFORMAN
W ULATIO}

Node « states »

Drained <—— Draining

Module « Paradigmes de Programmation pour le Calcul Scientifique » université pARIS-SACLAY 09/12/2025

LCUL
UTE

RFORMAN JOb

{ULATION

Job « states »

Running —— Completing

-
,,,,,,,
LAY

Module « Paradigmes de Programmation pour le Calcul Scientifique » universite paris-sACLAY 09/12/2025

.CUL
UTE
RFORMAN

JLATION

S
fi

’v - \n')

W %
1,./4 3
LS

Organisation physique

— lurmctid Slurmdbd
backup) (backu --

Slurmctid Slurmdbd
(master) (master)
Management Nodes (cluster) Management Nodes (cluster/site)
slurmd slurmd slurmd slurmd slurmd
slurmd | slurmd | slurmd || slurmd | slurmd
Login N?des Compute Nodes

Module « Paradigmes de Programmation pour le Calcul Scientifique » universite paris-sSACLAY 09/12/2025

. cALCUL
(b HAUTE

@7 PERFORMAN
{ULATION

Commandes principales

- scontrol

. obtention & modification de la configuration

. obtention & modification des états des éléments (nodes, partitions, jobs, ...)
- sacctmgr

. obtention & modification de la configuration des éléments stockés en BD (« users »,
« accounts », « qos » ...)

- sinfo
. Information sur I'état des partitions
- squeue
. Information sur I'état des « jobs »
- sacct
. Information sur |I'exécution de jobs en cours ou passés
- sstat

. Information détaillée sur I'exécution de jobs en cours

Module « Paradigmes de Programmation pour le Calcul Scientifique » universite paris-sACLAY 09/12/2025

LCUL
WUTE
RFORMAN

ULATION

- sbatch
.« Soumission » d’'une demande d’allocation de ressources détaillant les ressources nécessaires
. Fourniture du « script batch » associé
— Exécution du script sur les ressources disponibles sur le premier nceud « alloué »
. Mode « batch » (non interactif)
- L'utilisateur ne peut plus interagir directement avec son job et doit utiliser les commandes Slurm adhoc pour cela
— Les sorties stdout/stderr du script exécuté sont redirigés vers des fichiers (configurables)
- salloc
.« Soumission » d'une demande d’allocation de ressources détaillant les ressources nécessaires
. Lancement d’'un shell interactif associé aux ressources allouées des réalisation ou exécution locale d’un script passé en argument
. Permet I'exécution de commandes « srun » ultérieures pour créer des « jobstep » dans le job réalisé
- Facilite les tests en évitant I'attente « pending—running » inhérente a chaque soumission
- srun
.« Soumission » d’'une demande d’allocation de ressources détaillant les ressources nécessaires
. Execution d'un certain nombre de processus répartis sur les ressources allouées
- en fonction des détails fournis en argument
. Mode d'utilisation interactif (-s)

- L'utilisateur suit I’'exécution du job dans son terminal et peut interagir avec lui (signaux, stdin, ...)

Module « Paradigmes de Programmation pour le Calcul Scientifique » universite paris-sACLAY 09/12/2025

_ sattach

. Permet de suivre et/ou d’interagir avec un jJob
batch a la maniere d’un job interactif

_ scancel

. Permet la transmission d’un signal a un job ou
Jjobstep

. Permet de demander la terminaison au plus tot
d'un job ou jobstep

Module « Paradigmes de Programmation pour le Calcul Scientifique » universite paris-sACLAY 09/12/2025

g .CUL
W2 e HAUTE
GE‘?; 2 RFORMAN
&% <iuLaTiO!

User commands
Controller daemons

(partial list)
scontrol | 2 slurmectld o slurmctld
jiedmary] "~ backup)’:
sinfo
squeue
Other

scan --:—:-

L clusters

slurmd | | slurmd

Compute node daemons

Module « Paradigmes de Programmation pour le Calcul Scientifique » universite paris-sSACLAY 09/12/2025

LCUL
WUTE
RFORMAN

ULATION

sbatch

Log in

-_—

vim monscript

-
". ot
(% te

squeue > sattach

k

Log out J

Module « Paradigmes de Programmation pour le Calcul Scientifique » universite paris-sACLAY 09/12/2025

= \UTE
RFORMAN(
{ULATION

Ordonnancement

Comment organiser les priorités ?

N

Jobs en attente par
Priorité

Ressou rces\/

3

1
A
I 2

Module « Paradigmes de Programmation pour le Calcul Scientifique » universite paris-sACLAY 09/12/2025

LCUL

- 9w Politiques d’ordonnancement classiques

{ULATION

— FIFO : First-In First-Out
. Premier arrivée, premier servi
Eirct-Fif

r i bt d T T T
rentre-en machine

- FairSharing

. Baseé sur une notion de parts de ressources
attribueées aux différents utilisateurs

. Celui qui rentre est celui dont I'utilisation est la
plus inféerieure a ce qu’il est autorisé a utiliser

Module « Paradigmes de Programmation pour le Calcul Scientifique » universite paris-sACLAY 09/12/2025

LCUL

s Politiques d’ordonnancement classiques

{ULATION

- Aging

. Le plus ancien est le plus prioritaire
~ Size based

. Le plus petit (ou le plus gros) d’abord
- QOS (Qualité de service)

. Differentes qualités de service avec différentes
restrictions

. Certaines plus prioritaires que d’autres.
- Backfilling

. Un job moins prioritaire est exécuté en premier si il ne
repousse pas la date de démarrage des plus prioritaires.

Module « Paradigmes de Programmation pour le Calcul Scientifique » universite paris-sACLAY 09/12/2025

LCUL

- =9 Politiques d’optimisation classique

{ULATION

- Preemption

. Un job moins prioritaire laisse sa place a un plus
prioritaire lorsqu’il doit s’exécuter

- (suspension d’exécution ou remise en file d’attente
(queue))

- Best-effort

. Un job moins prioritaire est annulé si un plus prioritaire a
besoin des ressources

Module « Paradigmes de Programmation pour le Calcul Scientifique » universite paris-sACLAY 09/12/2025

CALCUL

. []
e Fairshare

' SIMULATION

ents hiérarchiques d’utilisateurs, notion d’ «

Machine Allocation

Account D

Machine Allocation 60 shares

Account C Account D

Account F
35 shares
User 1
.12 Usage
User 2
0 Usage

User 1 User2 User3 User 4
|
Actual Usage: 25
Actual Usage: .2 Effective Usage: 275 Actual Usage: .25 Actual Usage: 0
Effective Usage: 3875 Effective Usage: .25 Effective Usage; .1458

User 1 User 2 User 3 Actual Usage: 0

| Effective Usage: .15
Actual Usage: .25 \ Actual Usage: 0

————» represents actual usage
Actual Usage: 0 » represents effective usage

Module « Paradigmes de Programmation pour le Calcul Scientifique » universite parRIS-SACLAY 09/12/2025

s, cALCUL
& HAUTE

¢ RFORMAN
{ULATION

FairShare factor

- Lecart entre part utilisable et utilisée des utilisateurs
pondere la valeur de chaque job permettant de revenir a
I’equilibre souhaité au plus vite

BE X
. User-A share=0.3 usage=0.2, fact=0.6
. User-B share=0.2 usage=0.25, fact=0.45

Module « Paradigmes de Programmation pour le Calcul Scientifique » universite paris-sACLAY 09/12/2025

~ s Partition / QOS Factors

{ULATION

— Chaque partition/qos dispose d’une priorité

— La valeur renvoyée correspond a la normalisation de la
valeur de la partition ciblée par rapport a la priorite
maximum observée

BREX :
- partition-A priority=20, fact=0.2
- partition-B priority=100, fact=1.0
- Partition-C priority=70, fact=0.7

Module « Paradigmes de Programmation pour le Calcul Scientifique » universite paris-sACLAY 09/12/2025

G ," §§§§§§

f= W Multifactor priority plugin

- Exemple de configuration
PriorityWeightQOS=100 000
PriorityWeightAge=10 000
PriorityWeightFairshare=10 000
PriorityWeightjJobSize=0
PriorityWeightPartition=0

Priorité

Norma | Batch & Interactive jobs
Priority range : 40 000 - 50 000

Module « Paradigmes de Programmation pour le Calcul Scientifique » universite paris-sACLAY 09/12/2025

LCUL
\UTE

swws Limitation d’accés aux ressources

{ULATION

Il peut étre nécessaire de restreindre I’acceés a certaines ressources a certains utilisateurs

— |l peut eétre nécessaire de restreindre la quantité disponible de ressources pour certains utilisateurs

— |l peut étre nécessaire de restreindre le temps d’utilisation maximum possible en fonction des
utilisateurs

— Les partitions disposent d’un certain nombre de possibilités de restriction qui ne s’averent pas toujours
pratiques ou manquent de factorisation

= Les QOS permettent de corriger ce probleme en fournissant des restrictions s’appliquant
orthogonalement aux partitions

. Une méme partition peut étre accédées via différentes QOS
— Les « associations » permettent de raffiner encore la granularité de configuration des limitations
. Une association peut correspondre a:
- Un cluster et un account
— Un cluster, un account et un utilisateur
- Un cluster, un account, un utilisateur et une partition

. Les restrictions s’appliquent hiérarchiquement sur les associations d’un utilisateur pour un account
donné

— Un utilisateur peut étre associé a plusieurs account

Module « Paradigmes de Programmation pour le Calcul Scientifique » universite paris-sACLAY 09/12/2025

. LCUL

s 4 o [}
- e QOS — exemple de limites

{ULATION

MaxJobsPerUser

. Quantité maximale de jobs en exécution
- MaxSubmitjobsPerUser
. Quantité maximale de jobs enregistrés
- MaxNodes
. Quantité maximale de noeuds utilisables dans un job
- MaxWall
. Temps d’exécution maximum d’un job
- Maxjobs
. Quantité maximale de jobs en exécution
- MaxSubmitjobs
. Quantité maximale de jobs enregistrés
- Grpjobs
. Quantité maximale de jobs en exécution incluant les jobs de toutes les associations filles

GrpSubmitjobs : effectif max des jobs en attente

Module « Paradigmes de Programmation pour le Calcul Scientifique » universite paris-sACLAY 09/12/2025

= g LCUL
W) HAUTE
iNNZeo DERFORMAN
{ULATION

=» Docker créé un contexte préfixé par le nom du répertoire. ..

avec le docker-compose.yml, installation de
db mysqgl pour le nceud slurmdbd,
I noeud slurmdbd,
I noeud de contrdle,
2 noeuds de calcul, le tout sous MPI

docker compose up -d
Quwrir 2 shells {un pour le nceud de contrdle, un pour le nceud Cl1|

Module « Paradigmes de Programmation pour le Calcul Scientifique » universite paris-sACLAY 09/12/2025

nts (C4 L3) - Image Docker "m2chps-mpid4l-slurm”

CALCUL v

§ HAUTE HPC Node Contai
PERFORMANCE MDockes, Dabiss TiEeie]

© SIMULATION

t complet pour la simulation de cluster HPC

docker-entrypoint.sh
[Shell Seript]

Initialise les clés SSH et les
permissions au démarrage

jmbatto/m2chps-mpi41-slurm

Executes via exec
[bash]

ssibles du noeuds) oy
PID 1. Orchestre le

ervisord (et non avec tini) lancemant dor gémans,
sont démarrés —
[Compute Environmenty

Python Venv
[Python 3 + mpidpy]

SSHD

Omni-Compiler [Service] Telegraf
[Compiler] [Monitoring Agent]

Communication

ec un Ch Oix se I on |e pa ram ét ra ge Environnem:ﬂ}:l d'exécution Support XMP inter-ncestcillsi,s(;:zlljret acces Collecte des métriques
ompose)

Uses Used by

[mpidpy bindings] / [mpirun/ssh]

OpenMPI 4.1.8
[Library/Binary]

|Manages

Compilé avec support [process]

PMI/Slurm

AN

Interacts via
[P

MI2]

Slurm Workload Mgnager\
¥

Slurm Daemons
[C/Binary]

[

slurmctld, slurmd, slurmdbd

Authenticates via

\{‘socketf

Munge
[Auth Service]

Configs
[File]
Service d'authentification
pour Slurm

fetc/slurm/*.conf

Module « Paradigmes de Programmation pour le Calcul Scientifique »

CUL
UTE
IFORMAR

JLATIO

Quelques commandes SLURM

sinfo interrogation des files d'attente

sbatch soumission d'un job dans une file d'aftente (appelées partitions dans SLURM)

salloc réservation de ressources en interactif

srun crée une allocation de ressources, & utiliser avec sbatch ou salloc run parallel jobs
scancel suppression d'un job

squeue liste des jobs dans les files d'attente

sprio prorités relatives des jobs en attente

scontrol affiche/modifie des données relatives aux taches : jobs, nodes, partitions, reservations, efc.
sacct affiche les données des jobs

sacctmgr affiche et modifie les informations des comptes Slurm

sattach s'attacher & une étape de travail en cours

sdiag afficher les statistiqgues d’'ordonnancement et les parameétres de synchronisation

sreport rapports @ partir des données de comptabilisation des travaux et des statistiques d'utilisation
sshare afficher les parts et ['utilisation pour chaque compte de charge et chaque utilisateur

sstat afficher les statistiques d'un travail ou d'une étape en cours d'exécution

sbcast fransmettre un fichier aux nceuds alloués & un travail Slurm.

scrontab gestion de la crontab associée & slurm

Module « Paradigmes de Programmation pour le Calcul Scientifique » université pARIS-SACLAY 09/12/2025

g .CUL
il UTE

On fravaille dans le conteneur slurmctld
on Vverifie s'il y a une partition pour root

sacctmgr show association -p user=root
scontrol show partition
scontrol show nodes

sinfo -Nel
Sinon
sacctmgr --immediate add cluster name=1linux
PUIS un restart des images
Dans le répertoire /usr/local/var/mpishare faire

git clone

Dans les répertoires testl/test?

mpicc —-g3 —o elementarv elementarv.c

Module « Paradigmes de Programmation pour le Calcul Scientifique » universite paris-sACLAY 09/12/2025

http://gogs.eldarsoft.com/M2_IHPS/glcs_slurm.git

EXplorer les répertoires stepO, step], step?

Salloc -n 2 mpirun ./elementary =P aftention il faut que le binaire
SOIfVISIble des noeuds (pb de partage du binaire — modifier les scripts. ..l

sbatch scriptO.sh

sacct -] %jobid obtenu au moment du sbatch%
Dans le répertoire step0, modifier le script pour avoir un code retour differeni>aest

\/érifier le résultat du batch
sbatch -n 2 xxx.sh //[selon le répertoire)

squeue -s -] 3jobids

sacct -j3%jobid5s

squeue -s -1 30 -j %$jobid%
sacct -j %jobid%s

Module « Paradigmes de Programmation pour le Calcul Scientifique » universite paris-sSACLAY 09/12/2025

S, CALCUL

i «j; k HAUTE
<Si7g P =RFORMAN

{ULATION

Test de sbatch

sbatch

SN, =-nodes=minnodes:[-maxnodesllsize_string
Request that a minimum of minnodes nodes be allocated to this job.

-n, --ntasks=numben

sSPaich does not launch tasks, it requests an allocation of resources and SUBEAIS
g Daich script. This option advises the Slurm controller that job steps run WiRIR
ine allocation will launch a maximum of number tasks and fo provide Tor
suificient resources. The default is one task per node, but note that the --Cpuss
Per-iask option will change this detault.

sbatch —n2 —-N2 -exclusive xxx.sh

squeue -0 jobid,state,gos, timeused

Module « Paradigmes de Programmation pour le Calcul Scientifique » universite paris-sACLAY 09/12/2025

‘ﬂ‘{,"é .CUL

) Idée du TD — le probleme du temps partagé

ULATIOR

SLURM « envoie » un signal SIGTERM avant la limite du temps du baich

On veut observer la fin du batch =» raison du répertoire step2
sacctmgr modify gos normal set MaxWall=00:00:02

Module « Paradigmes de Programmation pour le Calcul Scientifique » université pARIS-SACLAY 09/12/2025

(. LCUL

e HAUTE
B RFORMAN

ULATION

Quelques dates pour le langage Go

2007 : Robert Griesemer, Rob Pike, Ken Thompson démarrent le projet
d'un nouveau langage (Pike et Thomson sont co-auteurs du B —avantie
C- et de 'UTF-8)

2009 : projet opensource publique
mars 2012 : Go 1.0
12 janvier 2016 : une nouvelle incroyable !
“All Systems z are Go: IBM ports Google language to mainframes®

Module « Paradigmes de Programmation pour le Calcul Scientifique » universite paris-sACLAY 09/12/2025

Le langage Go

 La création des langages est une activité continue
50 nouveaux langages tous 10 ans

{source https://en.wikipedia.org/wiki/Timeline_of_programming_languages)

Un langage est une représentation de I'espace du probléme

Un langage n'est pas universel (tour de Babell >idée de
spécialisation (en 1996, 500 langages spécialisés)

source hitp://www.cs.bsu.edu/homepages/dmz/cs697/langtbl.htm)
I faut environ 7 ans pour qu’un langage soit populaire
PHP4.2 (2002) ->2009
Python?2.3 (2003)>2010
Go1.x(2009)>2016 //langage de ['année sur tiobe.com

un Ioggoge “a la mode apparait” en fonction des pbs a “la
mode”

Typologie d'un langage

* les paradigmes sous jacents au deld du pure
langage
— Tout est liste (lisp, ruby, smalltalk) et rien d'autre
« Smalltalk conceptualise l'objet a travers une vision organisée

— Tout est objet (C++) y compris le clavier

« C++ reprend le C et branche des objets sur tout (header,
opérateur, template, ...)

— Tout est régle (SQL, Prolog)

 |'abstraction dans l'abstraction :
— mettre une VM
— meffre un ramasse miette
— metire des références a la place des pointeurs

.CUL
UTE
RFORMAN
JLATION

Le langage Go

break, default, func, interface, select, case, deier,
go, map, struct, chan, else, goto, package, swiich,
const, fallthrough, it, range, type, continue, for,
import, return, var

*2009 : Go 1.0 — avec un compilateur
*Go : 25 mots clés / pour ANSI C: 32 / pour Brainfuck : 8
*Approche CSP - les mémes pbs que ceux du HPC
*Langage Opensource

—>Licence du langage : type BSD

*Aujourd'hui 3 compilateurs : llgo (llvm), gcc, gc
*Processeurs cibles
ARM, ARM64, x86-32 et AMDG64, Mips32, Mips64, s390, PPC64, RiscV, loongarch64

Module « Paradigmes de Programmation pour le Calcul Scientifique » université pARIS-SACLAY 09/12/2025

A LCUL
(b HAUTE
NS DERFORMAN
{ULATION

Typage et gestion des chaines de texte
Postfixé // gestion de 'utf-8 — Rob Pike & K. Thompson
var b rune ='a’
var kanji_r rune = ‘4" // kaniji pour dire porte E99680
var kanji_s string = “\xE9\x96\x80"

frt.Printf(“%c \n%s et le charactére a, ascii = %+vin“,
kanji_r, kaniji_s, bl

Module « Paradigmes de Programmation pour le Calcul Scientifique » universite paris-sACLAY 09/12/2025

https://play.golang.org/p/XEVoMmK5mXw

g LCUL
%Fe () HAUTE

X »*\Qj\? RFORMAN

ULATION

Les variables

Les variables ef les constantes
vari="a
I:="a’
const a int = 10
const |
Red = (1«iota)
Green = (1«iotal
Blue ColorMask (1«iota,(1«(iota+1))-1))

=2 ramasse-miette
> rétérence &r, *r

Module « Paradigmes de Programmation pour le Calcul Scientifique » universite paris-sACLAY 09/12/2025

g L.CUL
Wase Wl HAUTE
i@ CERFORMAN

ULATION

tableaux

ltérateur
var s =[Istring{2:"aa”,"bb"}

for a,c =range s
{ fmtPrintf("%d,%s\n",a,c)]

... = variadic

Module « Paradigmes de Programmation pour le Calcul Scientifique » universite paris-sACLAY 09/12/2025

R g LCUL [

- o Arrays / Slices
TNy , ¢ PERFORMAN

S j ULATION

Slices =» un type plus intéressant
var s =[Istring{2:"aa”,"bb"}
var t=[Istring{4:"cc”,"dd"}
s=append|s;t..)

forac =ranges{ fmtPrintfl"%d,%s\n"a,c) |
0,
1
2,Qa
3,bb

Module « Paradigmes de Programmation pour le Calcul Scientifique » universite paris-sACLAY 09/12/2025

https://play.golang.org/p/jXS5Rn0U8UR

g LCUL
Wase Wl HAUTE
WP<Sjiy PERFORMAN
N _”f ULATION

var s =lIstring{2:"aa”,"bb"}
var t=[Istring{4:"cc”"dd"}
s=append|(sl2:4]4:6].)

forac =ranges| fmtPrintf"%d,%s\n"a,c |
0,aa
1,bb
2,cC
3,dd

Module « Paradigmes de Programmation pour le Calcul Scientifique » universite paris-sACLAY 09/12/2025

https://play.golang.org/p/1eyKjt-3lkr

=9 Allocati émoi
NS t{"*' D:f:#éf Oca |0n m m0|re

make)

newl)

A=newlint) // *A =0

=refourne un pointeur

B:=makelllint,1) // BI0O]=0

SIeiourne une référence et fait I'allocation

&localVar, &T1...]

Sretourne une référence

Module « Paradigmes de Programmation pour le Calcul Scientifique » universite paris-sACLAY 09/12/2025

g LCUL
(4% HAUTE

P<Sjs’ PERFORMAN
3 \j ULATION

Switch

Permet de choisir — plus élégant que I'accumulation de it
switch extension |
case
“svg’,
“png’,
" pdf’,
" fif”,
" fiff”,
“Ipeg’”,
“Ipg”
return
default : fmt.Printf“inconnu\n”)

}

Module « Paradigmes de Programmation pour le Calcul Scientifique » universite paris-sACLAY 09/12/2025

https://play.golang.org/p/geaxSJGnYmR

% cALcuL

G . SOV L - for i:=0; i<10;i++

for a,c = range |
break

continue (continue ['itération ou va & la conditio
d'arrét)
gofo

var t string =
“0.61803398874989484820458683436563811772030917980576286
2135448622705260462818"

for a,i = range t |
fmt.Printf{"a %d %c\n",q,i)
if i =="9"{

goto Fin

!
Fin:
fmt.Printf(“fin")

Module « Paradigmes de Programmation pour le Calcul Scientifique » universite paris-sacLAY 09/12/2025

https://play.golang.org/p/1J-Hzb0PAga
https://play.golang.org/p/61F0QcH3h4d

g CUL

- Jrowws | es mots réserves du langage

ULATION

break chan
default else

func goto
interface package
select switch
case const
defer fallthrough
go if

mnap range
struct type

Module « Paradigmes de Programmation pour le Calcul Scientifique » universite paris-sACLAY

continue
for
import
return
var

new
make
close

09/12/2025

g LCUL

g riauTe

Ma@iy’ PERFORMAN
ULATION

Le franstypage
L€ langage est contraint
var x int = 300
vary int = 400
var mul float32
mul = float32(x) * float32ly)

On peut franstyper un int en byte puis en rune
runelbytelval)

Module « Paradigmes de Programmation pour le Calcul Scientifique » universite paris-sACLAY 09/12/2025

— CUL
%%) HAUTE

NS RFORMAN
w ULATIO}

type fenetre_2char struct |
est_ascii bool
val_ascii rune

Création d’un objet : struct

|

const 1 string = &
“0.618033988/49894848204586834365638117720309179805762862135448622705
260462818"

func test_structl) {
sizeString = lenlt] - 2
fori=2;i«sizeString;i=i+2 |
val, err = strconv.Afoiltli : i+2]) Pb! Quelle est |a
if err == nil && val» 65 && val « 90 { bonne conversion?
a_rune = [lruneltli : i+2]) €=
a = fenetre_2char{est_ascii: true, val_ascii: a_runelOl}
fmt.Printfl“iteration i: %d variable a %+vin“, i, al

Module « Paradigmes de Programmation pour le Calcul Scientifique » université pARIS-SACLAY 09/12/2025

https://play.golang.org/p/AOqCFJRWERq
https://fr.wikibooks.org/wiki/Les_ASCII_de_0_%C3%A0_127/La_table_ASCII
https://oeis.org/A001622

i Ao LCUL
‘ f»aga \UTE
- N

Nes RFORMAN

{ULATION

B ‘

Fonction

iunc (self fenetre_2charl Print() (rune, int) {
imEPrintf{*Printl) rune %c\n”, self.val _ascii
a = bytelself.val_ascii
treturn self.val ascii, intla)

=»PDeul reiourner plusieurs valeurs a la fois !
=€ receveur (=self] peut étre une variable ou un pointeur sur une variable

Module « Paradigmes de Programmation pour le Calcul Scientifique » universite paris-sACLAY 09/12/2025

o LCUL
TSR =
:9‘4_,-75«,31 \UTE

WN@S " DERFORMAN
& '@ < ULation

Mecanisme de finalisation // contrat sur le futur (quand l'objet est
détruit)

defer = finally en java = local destructeur en C++
Permet de faire du code ‘propre’
Ulile pour les DB, les filesystem, les 1O (avec un close)

Module « Paradigmes de Programmation pour le Calcul Scientifique » universite paris-sACLAY 09/12/2025

A APplication de defer
S 4 ULATIO}

func test_strucil) (total int) {

var int

defer funcl) { total =i }
= lenl] - 2

for =2; « =i+ 2]
clies Atoiltli ; +2)
Printf(, val)

if lerr == nill && (val » 65) && (val « 90) {
= runelbytelvall)
= {est_ascii: true, : J
Printfl i, al
Print()

|

return
} Comment faire sans le «defer » ?

Module « Paradigmes de Programmation pour le Calcul Scientifique » université pARIS-SACLAY 09/12/2025

https://play.golang.org/p/4uo6CiZSINC

R g CUL

- Jzuwws Une fonction récursive en Python

ULATION

def suml(k):
def helper(n):
if n == 0:
return O
return n + helperin-1)
return helperlk)

def mainl):
printlsum(3))

if __name__ =='__main__"
mainll # print 6

Module « Paradigmes de Programmation pour le Calcul Scientifique » universite paris-sACLAY 09/12/2025

- Wl | a méme fonction en Golang

o
W2t DCRFORMAN
& '@ < ULation

package main
import |
) llfmtll
func sumlk int) int {
helpfer = fun?(n int) int {
N

return 0

|

return n + sumi(n-1)

J(k)
refurn helper

func mainl) {
fmt.Printin{sum(3))

|

09/12/2025

Module « Paradigmes de Programmation pour le Calcul Scientifique » universite paris-sACLAY

https://play.golang.org/p/ba3O1Ev42yt

A
e un—:

i \?‘;é’ RFORMAN
j ULATION

Ceci n'est pas du GO mais du C

var WeekDays = maplstringltime.Weekday{“lundi”: time.Monday, “monday”: time.Monday,
“mardi”: fime.Tuesday, “tuesday”: time.Tuesday,
“mercredi’: ime.Wednesday, “wednesday”: time.Wednesday,
“leudi”: time.Thursday, “thursday”: time.Thursday,
“vendredi”: time.Friday, “friday”: time.Friday,
‘samedi”: time.Saturday, “saturday”: time.Saturday,
“dimanche”: time.Sunday, “sunday”: time.Sunday}

func DaysValidation(DaysList *[Istring) error |
for idx, day = range *Dayslist {
// Cleaning input string
(*Dayslistllidx] = strings.ToLowerlstrings.Replacelday, “ “, “*, -1))
// String verification
_, is_valid := WeekDaysl(*DaysList)lidx]]
if lis_valid {
return errors.New("Only English and French days are known)

}

// If all day are well writen, return nil error
return nil

Module « Paradigmes de Programmation pour le Calcul Scientifique » universite paris-sACLAY 09/12/2025

i Ceci est du GO

ULATION

var daysValidation = funcl) maplstringltime Weekday {

return MAPIstringltime Weekday{"lundi”: time.Monday,
“‘monday”: fime.Monday,
‘mardi”: time.Tuesday,
“tuesday”: time.Tuesday,
“mercredi”: fime.Wednesday,
“wednesday”: time.Wednesday,
“leudi”: time.Thursday,
“thursday”: time.Thursday,
“vendredi”: time.Friday,
“friday”: time.Friday,
“samedi”: time.Saturday,
“saturday”: time.Saturday,
“dimanche”: time.Sunday,
“sunday”: time.Sunday]}
J
func printDaylkey string) |
a, err := daysValidation{lkeyl
fmt.Printin(err)
fmt.PrintInla)
J
func mainl) |
printDay("lundi’)
printDay(“londay”)

09/12/2025

Module « Paradigmes de Programmation pour le Calcul Scientifique » universite paris-sACLAY

https://play.golang.org/p/NYYyxDXaHmF

g L.CUL
Wase Wl HAUTE
N DERFORMAN
ULATION

Ce qui nous reste a voir

break chan continue
default else for

func goto import
interface package refurn
select switch var

case const hew
defer fallthrough make

go if close
map range &

sfruct fype

Module « Paradigmes de Programmation pour le Calcul Scientifique » universite paris-sACLAY 09/12/2025

g CUL

g e fallthrough
Ny i@ PERFORMAN

W g ULATION

func test fallthrough() {
:= 45

switch {

case < 10:

.Println()
fallthrough Fallthrough = cascade d’exécution
case < 50:
.Println()
fallthrough
.Println ()
case < 100:
.Println()
}

Module « Paradigmes de Programmation pour le Calcul Scientifique » université pARIS-SACLAY 09/12/2025

https://play.golang.org/p/I2i0vZtItNP

-y CSP : Communicating Sequential Process

Fondamental dans les machines multicoeurs

Notion de canal de ligison (channel) comme en MPI

Permet de faire des actions ‘en tdche de fond’

Module « Paradigmes de Programmation pour le Calcul Scientifique » universite paris-sACLAY 09/12/2025

.CUL
UTE
RFORMAN
ULATION

Module « Paradigmes de Programmation pour le Calcul Scientifique »

Programming S. L. Graham, R. L. Rivest
Techniques Editors

Communicating
Sequential Processes
C.A.R. Hoare

The Queen’s University
Belfast, Northern Ireland

This paper suggests that input and output are basic
primitives of programming and that parallel
composition of communicating sequential processes is a
fundamental program structuring method. When
combined with a development of Dijkstra’s guarded
command, these concepts are surprisingly versatile.
Their use is illustrated by sample solutions of a variety
of familiar programming exercises.

Key Words and Phrases: programming,
programming languages, programming primitives,
program structures, parallel programming, concurrency,
input, output, guarded commands, nondeterminacy,
coroutines, procedures, multiple entries, multiple exits,
classes, data representations, recursion, conditional
critical regions, monitors, iterative arrays

CR Categories: 4.20, 4.22, 4.32

CSP - Aout 1978 — Tony Hoare

grams, three basic constructs have received widespread
recognition and use: A repetitive construct (e.g. the while
loop), an alternative construct (e.g. the conditional
if..then. else), and normal sequential program composi-
tion (often denoted by a semicolon). Less agreement has
been reached about the design of other important pro-
gram structures, and many suggestions have been made:
Subroutines (Fortran), procedures (Algol 60 [15]), entries
(PL/I), coroutines (UNtx [17]), classes (sMuLA 67 [5]),
processes and monitors (Concurrent Pascal [2]), clusters
(CLU [13]), forms (ALPHARD [19]), actors (Hewitt [1]).

The traditional stored program digital computer has
been designed primarily for deterministic execution of a
single sequential program. Where the desire for greater
speed has led to the introduction of parallelism, every
attempt has been made to disguise this fact from the
programmer, either by hardware itself (as in the multiple
function units of the CDC 6600) or by the software (as
in an I/O control package, or a multiprogrammed op-
erating system). However, developments of processor
technology suggest that a multiprocessor machine, con-
structed from a number of similar self-contained proc-
essors (each with its own store), may become more
powerful, capacious, reliable, and economical than a
machine which is disguised as a monoprocessor.

In order to use such a machine effectively on a single
task, the component processors must be able to com-
municate and to synchronize with each other. Many
methods of achieving this have been proposed. A widely
adopted method of communication is by inspection and
updating of a common store (as in Algol 68 [18], PL/I,
and many machine codes). However, this can create
severe problems in the construction of correct programs
and it may lead to expense (e.g. crossbar switches) and

universiteé PARIS-SACLAY

09/12/2025

A LCUL
(b HAUTE

NS DERFORMAN
‘ {ULATION

=
g%
&: f

Les 7 propositions

Executions paralléles de commandes avec démarrage
synchrone et arrét synchrone (au dernier élément)

Echanges entre processus avec des E/S élémentaires via
des channels bloguants

Ceux-ci ont des actions déterminées en E/S sur |'état du
processus

Le concept de barriere non-déterministe
Commande d’'E/S avec barriére

Commande d'E/S dans les boucles

Capacité a choisir 'action en fonction du message

Module « Paradigmes de Programmation pour le Calcul Scientifique » universite paris-sACLAY 09/12/2025

g ‘CUL

B CSP Commumcatlng Sequential Process

ULATIO»* ‘

Communicating : les “channel” (chan]
make (chan string)

Sequential process = objets concurrents (gol
go func

Sequential process =blocage sur lecture/écriture
dans une file // bufter

Symbole «-

Module « Paradigmes de Programmation pour le Calcul Scientifique » universite paris-sACLAY 09/12/2025

A CuL

- W | es «canaux» - channels

{ULATION

chan : bidirectionnel
chan ¢« : en écriture seulement
¢- chan : en lecture seulement

Module « Paradigmes de Programmation pour le Calcul Scientifique » universite paris-sACLAY 09/12/2025

g LCUL
% 'v:‘Li.? \UTE

N DERFORMAN

ULATION

Hello World()

func Examplel) {
ch == makelchan string)
go funcl { ch « "Hello, world” }{
frnt.Printink-ch)
// Output: Hello, world

Module « Paradigmes de Programmation pour le Calcul Scientifique » universite paris-sACLAY 09/12/2025

https://play.golang.org/p/q-ugPxPk8d2

— CUL
%%) HAUTE

NS RFORMAN
w ULATIO}

Les channels

s sont typés
func test chan() ({
:= make (chan int)
.Println ()

go send(ch, 1)
.Println()
go receive (ch)
.Sleep(time.Second * 1)

}
func send(ch chan int, int) {

<-
}
func receive (ch chan int) {

:= <-ch
.Printf (
')

}

09/12/2025

Module « Paradigmes de Programmation pour le Calcul Scientifique » université paRIS-SACLAY

https://play.golang.org/p/QxzMmS5QZXr

. .CUL

'%% RFORMAN BUfferiSéS

ULATIOR

Buffered

func test buffered chan() ({
:= make (chan int, 1)
e 1
.Println()
:= <-ch
.Printf (r)

Module « Paradigmes de Programmation pour le Calcul Scientifique » université pARIS-SACLAY 09/12/2025

https://play.golang.org/p/esBAGSAaJ5g

g L.CUL
50 HAUTE
NS e RFORMAN
ULATION

Chan en écriture
func write example () {
:= make (chan int, 3)
process (ch)
.Println (<-ch)
}
func process (chWrite chan<- int) ({
- 2
//s := <-chWrite

Module « Paradigmes de Programmation pour le Calcul Scientifique » universite paris-sACLAY 09/12/2025

https://play.golang.org/p/TYjoCF4D0HT

g .CUL
[y HAUTE
TN i@ PERFORMAN
L ULATION

Chan en lecture

func read example() {
:= make (chan int, 3)
<- 2
process (ch)
.Println ()
}
func process (chRead <-chan int) ({
:= <-chRead
.Println(s)
//chRead <- 2

Module « Paradigmes de Programmation pour le Calcul Scientifique » université pARIS-SACLAY 09/12/2025

https://play.golang.org/p/yr8TU2hdgxY

A
b =

-V

.CUL
WUTE
RFORMAN

ULATIOR

len() — effectif des msg, Capll - capacité

func cap len example() {

:= make (chan int, 3)

= 5
.Printf (, len(ch), cap(ch))
<- 6
.Printf (, len(ch), cap(ch))
<- 7
.Printf (, len(ch), cap(ch))

Module « Paradigmes de Programmation pour le Calcul Scientifique » université pARIS-SACLAY 09/12/2025

https://play.golang.org/p/ktkstsrmecB

=W channel et opérateur range

func test range() {
:= make (chan int)

go sum(ch)

<- 2
<= 2
<- 2

close (ch)
.Sleep(time.Second * 1)

}
func sum(chRead <-chan int) {
:= 0
Range permet
for := range { <« de défiler un
+= chan
}
.Printf (,)

09/12/2025

universiteé PARIS-SACLAY

Module « Paradigmes de Programmation pour le Calcul Scientifique »

https://play.golang.org/p/wvNlG5cax_z

.CUL
UTE
RFORMAN
ULATION

Fermer un channel : close()

func process ch() {
:= make (chan int, 3)

<= 2
<- 2
== 2

close (ch) g—— Fermeture du channel
sum (ch)
.Sleep(time.Second * 1)

}
func sum(ch chan int) {
=0
for := range {
+=
}
.Printf (,)

09/12/2025

Module « Paradigmes de Programmation pour le Calcul Scientifique » université paRIS-SACLAY

https://play.golang.org/p/Uvjas1wNQ61

. .CUL

== On peut tester le statut du channel

func test status() {
:= make (chan int, 1)
<- 2
y := <-ch
.Printf (. ;)
close (ch)
) = <-ch
.Printf (, g)

Module « Paradigmes de Programmation pour le Calcul Scientifique » université pARIS-SACLAY 09/12/2025

https://play.golang.org/p/MNs0GPJeKkt

o LcuL
%@'Zﬁ UTE

W&y ©CRFORMAN
i \j ULATION

Commande Reéaction pour | Réaction pour | channel fermeé channel assigné
channel sans | channel avec a nil
buffer buffer

chan <- bloquant si bloque si le panic bloque

/[écrire pas de lecteur channel est plein indéfiniment
sinon succes

<- chan bloque s’iln'y bloquesile récupere le contenu bloque

/[lire a pas channel est vide du channel ou alors indéfiniment
d'écrivain un type vide

len() o) effectif desmsg o pour les channel 0

[/effectif des msg restant sans buffer —sinon

restant effectif msg

cap() 0 capacité du o pour les channel 0

[[capacité channel sans buffer —sinon

capacité msg

close() Succes succes panic panic

Module « Paradigmes de Programmation pour le Calcul Scientifique » universite paris-sACLAY 09/12/2025

CUL
Le select
RFORMAN

ULATION

const quit value=999

func fibonacci (cWrite, chan int) {
.Println ()
f =0, 1
for {
.Printf (; X)
select { e .
Permet de filtrer le msg
case <- S
4 = 14 +y
case := <-cmdRead:
.Printf (.) | Le select est bloquant,
T sauf avec default
//default : fmt.Printf ()

}1}

func main() {
:= make (chan int)
:= make (chan int)

go func() {

.Println ()
for = 0; < 5; i++ {
= <-c
.Printf (;)
}
<_

}O)
//close(c)

fibonacci(c,)}

Module « Paradigmes de Programmation pour le Calcul Scientifique » université pARIS-SACLAY 09/12/2025

https://play.golang.org/p/r92J8kn-rfE

LCUL

" =W Ce que nous avons vu

ULATION

break chan
default else

func goto
inferface package
select switch
case const
defer fallthrough
go if

map range
struct type

Module « Paradigmes de Programmation pour le Calcul Scientifique » universite paris-sACLAY

continue
for
import
return
var

new
make
close

09/12/2025

- LCUL
6> HAUTE

23 AL
@l PERFORMAN

{ULATION

Les tests en langage Go

Quels sont les avantages de prendre en charge les tests?

Les fichiers _test.go exposent les tests !

On conserve I'historique des tests (ca n‘est plus dans le main)
Apporie de la documentation

Permet de faire de la non-régression

Permet de faire de la validation fonctionnelle lie. driver

=»icii parti des LOC (lines of code)

Module « Paradigmes de Programmation pour le Calcul Scientifique » universite paris-sACLAY 09/12/2025

A LCUL

W il HAUTE
TNBT RFORMAN
{ULATION

Quels sont les tests ?
Dans le langage Go, les tests sont pris en charge par le compilateur

Pour fester un package (dans I'exemple cest le package main):
Imporier le package testing
Ponner un nom de ficher en _test.go

Metire des fonctions de signature TestiMajusculel(t* testing
Par exemple : func TestinsertHistolt *testing.T) |

Module « Paradigmes de Programmation pour le Calcul Scientifique » universite paris-sACLAY 09/12/2025

https://play.golang.org/p/oSDZYo0p0YC

o CUL
b T
S Les tests
'w, ¢ PERFORMAN
. \:j ULATIO®}

Que décrit la variable t* testing ?

func TestMemoCds (t *testing.T) ({
var
.lenCds =1

. rawCds

.reset ()

.Printf (, S)
.appendR ()

.Printf (, S)

Module « Paradigmes de Programmation pour le Calcul Scientifique » université pARIS-SACLAY 09/12/2025

https://play.golang.org/p/2RbN69wBMmS

L .CUL
by
]-4"4,,-7}' Pl HAUTE

NS RFORMAN
w ULATIO}

Objet : 2 méthodes — Log,Error

Un test est pensé pour une utilisation
« automatique » =» l'idée d'un PASS/FAIL

func TestMemoCdsReset (t *testing.T) {
var
.lenCds =1
.rawCds =
.reset ()
BEN(s != {}) {
.Error ()
} else {

. Log ()

Module « Paradigmes de Programmation pour le Calcul Scientifique » université pARIS-SACLAY 09/12/2025

g :5,'- = CUL
2%\l HAUTE

NS e, RFORMAN
“\?ﬁ"fj JLATIO}

2

Les modules

Présentation de go.mod = gestion des modules
go mod init, go mod tidy

module ExtractCDS

go 1.16

require (

configExtract v0.0.0-00010101000000-000000000000

gonum.org/vl/plot v0.10.0
) “ Q VERSION

replace configExtract => ./configExtract

Module « Paradigmes de Programmation pour le Calcul Scientifique » université pARIS-SACLAY 09/12/2025

