
JOUR / MOIS / ANNEE

#2
05/12/2025
jean-michel.batto@cea.fr

https://gogs.eldarsoft.com/M2_IHPS



.0205/12/2025Module «Paradigmes de Programmation pour le Calcul Scientifique »







https://uvsq-fr.zoom.us/survey/wrFutQbvwwEsTPMeSb7J-k8wKIzakfBHJH0rToYqfcAhkax-w34.kxCj6S39-xou7Qaa/view?id=_grEuru6QWilVZ8rcaPzZA#/sharePreview
https://www.association-aristote.fr/evenements/seminaire-la-complexite-dans-les-sciences-physiques/


.0305/12/2025Module «Paradigmes de Programmation pour le Calcul Scientifique »









https://github.com/jmbatto/master-mpi.git


.0405/12/2025Module «Paradigmes de Programmation pour le Calcul Scientifique »

 

 

https://docs.docker.com/desktop/windows/install/


.0505/12/2025Module «Paradigmes de Programmation pour le Calcul Scientifique »

  



$HOME/.ssh

-rw-r--r-- authorized_keys

-rw------- id_rsa

-rw-r--r-- id_rsa.pub

-rw-r--r-- known_hosts



.0605/12/2025Module «Paradigmes de Programmation pour le Calcul Scientifique »



docker swarm init



docker network create --driver=overlay 

--attachable yml_mpinet



docker-compose up --scale mpihead=1 --

scale mpinode=2 -d





.0705/12/2025Module «Paradigmes de Programmation pour le Calcul Scientifique »

 On souhaite « pratiquer » MPI  utiliser mpicc + lmpi
hello_world.cc

$mpirun --mca orte_base_help_aggregate 0 --mca

btl_tcp_if_include 10.0.2.0/24 -n 2 -host 

10.0.2.28,10.0.2.27 hello_world

Hello world from processor 1f9914291b09, rank 0 out of 

2 processors

Hello world from processor f2057a67f137, rank 1 out of 

2 processors

$ mpicc mpi_any_source.cc -o any_source -lmpi

$ mpirun --mca orte_base_help_aggregate 0 --mca

btl_tcp_if_include 10.0.2.0/24 -n 2 -host 

10.0.2.28,10.0.2.27 any_source

[MPI process 0] I send value 12345.

[MPI process 1] I received value 12345, from rank 0.



.0805/12/2025Module «Paradigmes de Programmation pour le Calcul Scientifique »



mpiuser@120dfa60a718:~$ mpirun --mca

orte_base_help_aggregate 0 --mca

btl_tcp_if_include 10.0.2.0/24 -n 2 -host 

10.0.2.24,10.0.2.19 python3 

./mpi4py_benchmarks/all_tests.py

















.0905/12/2025Module «Paradigmes de Programmation pour le Calcul Scientifique »

while counter < iter:

comm.Barrier()               ### Start stopwatch ###

t_start = MPI.Wtime()

for t in xrange(20):

my_new_vec = np.inner(my_M, vec)

comm.Allgather(

[my_new_vec, MPI.DOUBLE],

[vec, MPI.DOUBLE]

)

comm.Barrier()

t_diff = MPI.Wtime() - t_start ### Stop stopwatch

if myid == 0:

print ('%-10.3f%20.2f' % (t_diff, bs/t_diff))

counter += bs

Fichier : al_test.py



.01005/12/2025Module «Paradigmes de Programmation pour le Calcul Scientifique »

configure puis

/osu-micro-benchmarks-7.3/mpi/pt2pt/osu_bibw.c

Extrait du code…

if (myid == 0) {

double tmp = size / 1e6 * options.iterations * window_size;

fprintf(stdout, "%-*d%*.*f\n", 10, size, FIELD_WIDTH,

FLOAT_PRECISION, tmp / t_total);

fflush(stdout); }



http://mvapich.cse.ohio-state.edu/download/mvapich/osu-micro-benchmarks-7.3.tar.gz


.01105/12/2025Module «Paradigmes de Programmation pour le Calcul Scientifique »



docker stats --no-stream --format "table {{.Name}}\t{{.Container}}\t{{.MemUsage}}"



.01205/12/2025Module «Paradigmes de Programmation pour le Calcul Scientifique »







 HTTP/2 HTTP/3

TLS 1.2 QUIC

TCP UDP

Internet 
Protocol (IP)



.01305/12/2025Module «Paradigmes de Programmation pour le Calcul Scientifique »

 















http://mvapich.cse.ohio-state.edu/benchmarks/
http://mvapich.cse.ohio-state.edu/download/mvapich/osu-micro-benchmarks-7.3.tar.gz


.01405/12/2025Module «Paradigmes de Programmation pour le Calcul Scientifique »

docker build -t jmbatto/m2chps-mpi41 

docker-compose scale mpihead=1 mpinode=9 



.01505/12/2025Module «Paradigmes de Programmation pour le Calcul Scientifique »



















.01605/12/2025Module «Paradigmes de Programmation pour le Calcul Scientifique »

 docker-compose - gpu

nvidia.yml

 PPCS-CM2-2025

docker compose up -d





https://zed.dev/download


.01705/12/2025Module «Paradigmes de Programmation pour le Calcul Scientifique »









https://ollama.com/search


.01805/12/2025Module «Paradigmes de Programmation pour le Calcul Scientifique »









http://localhost:3001/


.01905/12/2025Module «Paradigmes de Programmation pour le Calcul Scientifique »





 



.02005/12/2025Module «Paradigmes de Programmation pour le Calcul Scientifique »







 

https://github.com/llm-attacks/llm-attacks/blob/main/data/advbench/harmful_behaviors.csv


.02105/12/2025Module «Paradigmes de Programmation pour le Calcul Scientifique »



.02205/12/2025Module «Paradigmes de Programmation pour le Calcul Scientifique »





 

 







https://www.association-aristote.fr/evenements/seminaire-go-au-dela-des-limites/


.02305/12/2025Module «Paradigmes de Programmation pour le Calcul Scientifique »



 



 

 

 



.02405/12/2025Module «Paradigmes de Programmation pour le Calcul Scientifique »



 

 















.02505/12/2025Module «Paradigmes de Programmation pour le Calcul Scientifique »











.02605/12/2025Module «Paradigmes de Programmation pour le Calcul Scientifique »









 



.02705/12/2025Module «Paradigmes de Programmation pour le Calcul Scientifique »

Fichier : tony_hoare-CSP1978.pdf



.02805/12/2025Module «Paradigmes de Programmation pour le Calcul Scientifique »









.02905/12/2025Module «Paradigmes de Programmation pour le Calcul Scientifique »









 



.03005/12/2025Module «Paradigmes de Programmation pour le Calcul Scientifique »





Objets et 
opérations du 

monde réel

Objets du monde 
réel

Objets et 
opérations du 

langage de 
programmation

Données de 
sortie

Données Résultats
Algorithme du monde réel

Algorithme informatique



.03105/12/2025Module «Paradigmes de Programmation pour le Calcul Scientifique »















.03205/12/2025Module «Paradigmes de Programmation pour le Calcul Scientifique »

Paradigme Support dans Go Niveau de support Commentaires pour le calcul scientifique
Impératif Oui, natif Excellent • Boucles for, variables mutables, pointeurs, etc. C’est même le style dominant de Go.

Fonctionnel Oui, partiel mais très utilisable Bon

• Fonctions de première classe - Closures - Fonctions anonymes et littérales - Types de fonctions (func
comme type) - Méthodes comme valeurs de fonction 

• Mais : pas de pattern matching, pas d’immutabilité forcée, pas de tail-call optimization, pas de 
higher-order types (generics de fonctions limités avant Go 1.18, maintenant possibles mais verbeux). 

• En pratique, on écrit très bien du code fonctionnel (map/filter/reduce avec des closures).

Orienté objet
Oui, mais sans héritage 
classique

Très bon (style « 
composition over 
inheritance »)

• Méthodes sur n’importe quel type (struct, types de base…) –
• Embedding (composition + promotion de méthodes) –
• Interfaces implicites (duck typing) –
• Polymorphisme via interfaces, c’est l’un des points forts de Go pour le calcul scientifique : on peut 

faire du code très propre avec des interfaces comme io.Reader, sort.Interface, ou des interfaces 
personnalisées pour les tenseurs, matrices, etc.

Déclaratif / 
Prédicat

Oui, dans une certaine mesure Moyen à bon

• Go n’est pas un langage déclaratif pur (comme Prolog ou SQL),
• mais : - Les interfaces sont déclaratives (« je veux quelque chose qui satisfait ça ») –
• Le système de concurrence (channels + select) est souvent décrit comme déclaratif –
• Les generics (depuis Go 1.18) permettent d’écrire du code plus déclaratif - On utilise beaucoup les 

littéraux de struct et de slice/map qui sont déclaratives 
• En calcul scientifique, on compense souvent avec des DSL embarqués (ex. gonum, expr via des libs

tierces).

Parallèle / 
Concurrence
CSP

Oui, support de première 
classe

Excellent

• Goroutines ultra-légères –
• Channels (communication sécurisée) - sync package (WaitGroup, Mutex, atomic, etc.) - go keyword + 

select + sync/atomic + context
• C’est probablement le meilleur support natif de la concurrence parmi les langages systèmes 

modernes. 
• Très utile pour le calcul scientifique (parallélisation de boucles numériques, pipelines de traitement, 

simulations Monte-Carlo, etc.).



.03305/12/2025Module «Paradigmes de Programmation pour le Calcul Scientifique »





Objets et 
opérations du 

monde réel

Objets du monde 
réel

Objets et 
opérations du 

langage de 
programmation

Données de 
sortie

Données Résultats
Algorithme du monde réel

Algorithme informatiqueclarté



.03405/12/2025Module «Paradigmes de Programmation pour le Calcul Scientifique »



Fichier : PlantUML_Language_Reference_Guide_fr.pdf

http://www.plantuml.com/plantuml/uml

http://www.plantuml.com/plantuml/uml


.03505/12/2025Module «Paradigmes de Programmation pour le Calcul Scientifique »















.03605/12/2025Module «Paradigmes de Programmation pour le Calcul Scientifique »

@startuml

class Commande {

Num_Commande

}

class Date_cmd {

Date_cmd

}

class Produit {

Code_produit

}

class Bordereau {

Quantité

}

' arité = 2

Commande "1..*" -down- "0..*" Bordereau

' Une classe ternaire / arité = 3

(Produit, Date_cmd) .. Bordereau

@enduml

Une classe peut avoir une arité

http://www.plantuml.com/plantuml/uml

http://www.plantuml.com/plantuml/uml


.03705/12/2025Module «Paradigmes de Programmation pour le Calcul Scientifique »

' commentaire

@startuml

class Instrument {

Nom

Date_fabrication

Prix

Accordage()

}

class Corde {

Nombre_de_corde

}

class Percussion {

Poids

RangeToi()

}

class Vent {

Gamme

Purge()

}

Instrument <|--Vent

Instrument <|--Percussion

Instrument <|--Corde

@enduml Corde spécialise Instrument



.03805/12/2025Module «Paradigmes de Programmation pour le Calcul Scientifique »

' comment

@startuml

class Type_Véhicule {

PayeTaxe()

}

class Véhicule {

Nombre_de_Passager

}

class Moteur {

Puissance

}

Moteur "1" *-right- "plusieurs" Véhicule : contient

Type_Véhicule "1" o-- "plusieurs" Véhicule : connait/\nagrégation

@enduml



.03905/12/2025Module «Paradigmes de Programmation pour le Calcul Scientifique »

@startuml

object marque_renault

marque_renault : année

object moteur_1200

moteur_1200 : carburant

diamond dia

object ma_voiture

ma_voiture : prix

marque_renault -- dia

moteur_1200 -- dia

dia -- ma_voiture

@enduml



.04005/12/2025Module «Paradigmes de Programmation pour le Calcul Scientifique »



 donne moi le code pour PlantUML qui décrit la relation entre une objet de 

type marque_renault avec un attribut année, un objet de type moteur_1200 

avec un attribut carburant et une instance de ma_voiture composition des 

deux précédents.

@startuml
class MarqueRenault {

année : int
}
class Moteur1200 {

carburant : string
}
class MaVoiture {
}
MaVoiture --* MarqueRenault : "possède une"
MaVoiture --* Moteur1200 : "possède un"
@enduml

https://build.nvidia.com/meta/llama-3_1-70b-instruct


.04105/12/2025Module «Paradigmes de Programmation pour le Calcul Scientifique »



 donne moi le code pour PlantUML qui décrit la relation entre une objet de 

type marque_renault avec un attribut année, un objet de type moteur_1200 

avec un attribut carburant et une instance de ma_voiture composition des 

deux précédents.
@startuml
class Marque_Renault {
- année : int

}
class Moteur_1200 {
- carburant : string

}
class Ma_Voiture {
- Marque_Renault
- Moteur_1200

}
Marque_Renault --* Ma_Voiture : composition
Moteur_1200 --* Ma_Voiture : composition
@enduml

https://build.nvidia.com/meta/llama-3_1-70b-instruct


.04205/12/2025Module «Paradigmes de Programmation pour le Calcul Scientifique »



 donne moi le code pour PlantUML qui décrit la relation entre une objet de 

type marque_renault avec un attribut année, un objet de type moteur_1200 

avec un attribut carburant et une instance de ma_voiture composition des 

deux précédents.@startuml
' Définition des classes (Objets)
class marque_renault {

+ année : Integer
}
class moteur_1200 {

+ carburant : String
}
class ma_voiture {

' ma_voiture est composée d'exactement une marque_renault
' ma_voiture est composée d'exactement un moteur_1200

}
ma_voiture "1" *-- "1" marque_renault : possède
ma_voiture "1" *-- "1" moteur_1200 : possède
@enduml



.04305/12/2025Module «Paradigmes de Programmation pour le Calcul Scientifique »



 C'est bien, mais la cardinalité me semble fausse. La classe Ma_Voiture possède 

l'objet moteur et l‘objet marque_renault.

@startuml
class Marque_Renault {

- année : int
}
class Moteur_1200 {

- carburant : string
}
class Ma_Voiture {

- Marque_Renault
- Moteur_1200

}
Marque_Renault --1 Ma_Voiture : composition
Moteur_1200 --1 Ma_Voiture : composition
@enduml

https://build.nvidia.com/meta/llama-3_1-70b-instruct


.04405/12/2025Module «Paradigmes de Programmation pour le Calcul Scientifique »



 C'est bien, mais la cardinalité me semble fausse. La classe Ma_Voiture possède 

l'objet moteur et l‘objet marque_renault.
@startuml
' Définition des classes (Objets)
class marque_renault {

+ année : Integer
}
class moteur_1200 {

+ carburant : String
}
class ma_voiture {

' La voiture contient (est composée de) ces deux objets
}
' Relations de Composition (Losange noir)
' Indique que les composants ne peuvent pas exister sans la classe ma_voiture.
' Cardinalité "1" du côté de la partie (la voiture contient exactement 1 objet de ce type)
' Cardinalité "1" du côté du tout (la partie appartient exclusivement à 1 seul objet ma_voiture)

ma_voiture "1" *-- "1" marque_renault : marque
ma_voiture "1" *-- "1" moteur_1200 : moteur
@enduml



.04505/12/2025Module «Paradigmes de Programmation pour le Calcul Scientifique »







.04605/12/2025Module «Paradigmes de Programmation pour le Calcul Scientifique »

@startuml

if (condition?) then

:erreur;

stop

endif

#palegreen:action;

@enduml

@startuml

start

while (données disponibles?)

#palegreen:lecture données;

:traite données;

endwhile

stop

@enduml



.04705/12/2025Module «Paradigmes de Programmation pour le Calcul Scientifique »

@startuml

state fork_state <<fork>>

[*] --> fork_state

fork_state --> Etat_CollecteMPI_noeud1

fork_state -->Etat_CollecteMPI_noeud2

state join_state <<join>>

Etat_CollecteMPI_noeud1--> join_state

Etat_CollecteMPI_noeud2--> join_state

join_state --> Etat_finalisetraitement

Etat_finalisetraitement--> [*]

@enduml



.04805/12/2025Module «Paradigmes de Programmation pour le Calcul Scientifique »

 Peux-tu écrire en code PlantUML le diagramme d'états qui représente la synchronisation de 

deux threads de traitement MPI Etat_CollecteMPI_noeud1 et Etat_CollecteMPI_noeud2. Ceux-

ci se divisent en deux branches à partir d'un état de fourche, puis se synchronisent à un état 

de jointure nommé Etat_finalisetraitement avant de se terminer à un état terminal

@startuml

state fork_state <<fork>>

[*] --> fork_state

fork_state --> Etat_CollecteMPI_noeud1

fork_state --> Etat_CollecteMPI_noeud2

state join_state <<join>>

Etat_CollecteMPI_noeud1 --> join_state

Etat_CollecteMPI_noeud2 --> join_state

join_state --> Etat_finalisetraitement

Etat_finalisetraitement --> [*]

@enduml



.04905/12/2025Module «Paradigmes de Programmation pour le Calcul Scientifique »

 Il faut changer le prompt :

 Peux-tu écrire en code PlantUML le diagramme d'états qui représente la synchronisation de deux threads de traitement MPI Etat_CollecteMPI_noeud1 et 

Etat_CollecteMPI_noeud2. Ceux-ci se divisent en deux branches à partir d'un état de fourche, puis se synchronisent à un état de jointure nommé 

Etat_finalisetraitement avant de se terminer à un état terminal

 "Pouvez-vous écrire en code PlantUML un diagramme d'états qui représente la synchronisation de deux threads de 

traitement MPI ? Le diagramme doit comporter un état de fourche qui divise les deux threads en deux branches, puis 

un état de jointure qui synchronise les deux threads avant de se terminer à un état final."

@startuml

state fork_state <<fork>>

[*] --> fork_state

fork_state --> Etat_CollecteMPI_noeud1

fork_state --> Etat_CollecteMPI_noeud2

state join_state <<join>>

Etat_CollecteMPI_noeud1 --> join_state

Etat_CollecteMPI_noeud2 --> join_state

join_state --> Etat_finalisetraitement

Etat_finalisetraitement --> [*]

@enduml



.05005/12/2025Module «Paradigmes de Programmation pour le Calcul Scientifique »

@startuml

state fork_state <<fork>>

[*] --> fork_state

fork_state --> Etat_CollecteMPI_noeud1 : thread1

fork_state -->Etat_CollecteMPI_noeud2 : thread2

state join_state <<join>>

Etat_CollecteMPI_noeud1 --> panic : erreur

Etat_CollecteMPI_noeud2 --> panic : erreur

Etat_CollecteMPI_noeud1--> join_state : fin thread1

Etat_CollecteMPI_noeud2--> join_state : fin thread2

join_state --> Etat_finalisetraitement

Etat_finalisetraitement--> [*]

@enduml



.05105/12/2025Module «Paradigmes de Programmation pour le Calcul Scientifique »

@startuml

start

partition "**Service Achats** ACME" {

split

:PrepCommande;

:OuvreCommande;

note left

La commande doit être validée

----

//état non validé//

end note

split again

-[hidden]->

end split

:Fin de journée;

}

partition "**Validation Achats** ACME" {

:EnvoiCommande;

}

@enduml



.05205/12/2025Module «Paradigmes de Programmation pour le Calcul Scientifique »

@startuml

participant User

User -> Pattern1: CreateObject

activate Pattern1 #FFBBBB

Pattern1-> Pattern1: Internal call

activate Pattern1 #DarkSalmon

Pattern1 -> Object1 : << createRequest >>

activate Object1 

Object1 --> Pattern1: RequestCreated

deactivate Object1 

deactivate Pattern1

Pattern1 -> User: Done

deactivate Pattern1

@enduml

http://www.plantuml.com/plantuml/uml/RP31pe8m3CVlVOectva3Lq88-IGadZGQ7w2E7j1HS1IVNoOoiyWEMzFrrt_xBqSbfrDdOPZVrhG3YU9bP0V-mgJ08wcoapJ3dMDIFbnlR1J8QFiavV2FVtNzFnzO4n6x5n-GHKFMRi4LkVkPRDTBQE3L5xKKCynpDEy1JloOU5GiYj0dbC4Q997w1raMQA3XN_2R2rmqYBSZmweNtYmjMPhPnXS0

http://www.plantuml.com/plantuml/uml/


.05305/12/2025Module «Paradigmes de Programmation pour le Calcul Scientifique »

@startuml

skinparam actorStyle Hollow

left to right direction

actor SuperExpertN3

cloud "Google" {

actor utilisateurGoogle

actor supportGoogleN1N2

node "Redmine_Google"

node "GLPI_Google"

utilisateurGoogle -[bold]->Redmine_Google

supportGoogleN1N2 --> Redmine_Google

supportGoogleN1N2 --> GLPI_Google

}

cloud "AWS" {

actor utilisateurAWS

actor supportAWSN1N2

node "Redmine_AWS"

node "GLPI_AWS"

utilisateurAWS -[bold]->Redmine_AWS

supportAWSN1N2 --> Redmine_AWS

supportAWSN1N2 --> GLPI_AWS

}

GLPI_AWS <-.-> GLPI_Google

SuperExpertN3 -left-> GLPI_AWS

SuperExpertN3 -left-> GLPI_Google

@enduml



.05405/12/2025Module «Paradigmes de Programmation pour le Calcul Scientifique »



.05505/12/2025Module «Paradigmes de Programmation pour le Calcul Scientifique »

@startuml

!define AWSPuml https://raw.githubusercontent.com/awslabs/aws-icons-for-plantuml/v13.1/dist

!include AWSPuml/AWSCommon.puml

!include AWSPuml/Groups/all.puml

!include AWSPuml/ApplicationIntegration/StepFunctions.puml

!includeurl <aws/common.puml>

!includeurl <aws/ApplicationServices/AmazonAPIGateway/AmazonAPIGateway.puml>

!includeurl <aws/Compute/AWSLambda/AWSLambda.puml>

!includeurl <aws/Compute/AWSLambda/LambdaFunction/LambdaFunction.puml>

!includeurl <aws/Database/AmazonDynamoDB/AmazonDynamoDB.puml>

!includeurl <aws/Database/AmazonDynamoDB/table/table.puml>

!includeurl <aws/General/AWScloud/AWScloud.puml>

!includeurl <aws/General/client/client.puml>

!includeurl <aws/General/user/user.puml>

!includeurl <aws/SDKs/JavaScript/JavaScript.puml>

!includeurl <aws/Storage/AmazonS3/AmazonS3.puml>

!includeurl <aws/Storage/AmazonS3/bucket/bucket.puml>

skinparam componentArrowColor Black

skinparam componentBackgroundColor White

skinparam nodeBackgroundColor White

skinparam agentBackgroundColor White

skinparam artifactBackgroundColor White

Paramétrage
Pour inclure 
les icônes 
AWS

Rendu



.05605/12/2025Module «Paradigmes de Programmation pour le Calcul Scientifique »

AWSCLOUD(aws) {

AMAZONS3(s3) {

BUCKET(raw,raw-landing)

BUCKET(logs,logsProgress)

}

AMAZONAPIGATEWAY(api)

AWSLAMBDA(lambda) {

LAMBDAFUNCTION(doCp,doCompute)

StepFunctionsWorkflowGroup(sfw) {

LAMBDAFUNCTION(oWk,OrganizeWorkers)

LAMBDAFUNCTION(sfw1,WorkerComputeToken) 

rectangle "$LambdaFunction()\nread parameters" as sfw0

}

AMAZONDYNAMODB(dynamo) {

TABLE(Token,Token)

}

oWk -> sfw0: Start\nExecution

sfw0 -> sfw1

}

}

api -l-> doCp:**1a**) callLambda

doCp -l-> oWk:**1b**) start

raw ~> logs :1c) notify

doCp --> logs:1d) notify

sfw0 --> logs:1e) notify

oWk ..-> sfw1:1f) prepare

sfw1 -r-> raw:**2a**) use

sfw1 -r-> Token:**2b**) fill

@enduml

-l-> : left
-u-> : up
-d-> : down
-u-> : up



.05705/12/2025Module «Paradigmes de Programmation pour le Calcul Scientifique »



.05805/12/2025Module «Paradigmes de Programmation pour le Calcul Scientifique »

 Peux-tu écrire en PlantUML le diagramme 

de séquence qui démontre la 

synchronisation MPI sur une barrière MPI

entre 3 threads qui exécutent une 

opération de calcul ? Le résultat des 3 

threads est collecté par un thread principal 

en charge du lancement des 3 threads.



.05905/12/2025Module «Paradigmes de Programmation pour le Calcul Scientifique »



.06005/12/2025Module «Paradigmes de Programmation pour le Calcul Scientifique »

 Peux-tu écrire en PlantUML le 

diagramme de séquence qui 

démontre la synchronisation 

MPI sur une barrière MPI entre 

3 threads qui exécutent une 

opération de calcul ? Le 

résultat des 3 threads est 

collecté par un thread 

principal en charge du 

lancement des 3 threads.



.06105/12/2025Module «Paradigmes de Programmation pour le Calcul Scientifique »

@startuml

!define I4  https://raw.githubusercontent.com/Crashedmind/PlantUML-opensecurityarchitecture2-icons/master

!include I4/Common.puml

!include I4/Hardware/all.puml

!include I4/Server/all.puml

!include I4/Misc/all.puml

!include I4/Site/all.puml

!include I4/User/all.puml

osa_iPhone(osa_iPhone_ext, "label", "technology")

osa_firewall(osa_firewall1, "label", "technology")

osa_desktop(osa_desktop1, "label", "technology")

osa_iPhone_ext -->osa_firewall1

osa_desktop1-->osa_firewall1

package "DMZ" #DDDDDD {

osa_server_gateway(osa_server1, "label", "technology")

}

osa_firewall1-->osa_server1

package "utilisateurs CAD" {

osa_iPhone(osa_iPhone, "label", "technology")

osa_server1 <|-- osa_iPhone : Testing <$osa_firewall,scale=1,color=red>

}

@enduml



.06205/12/2025Module «Paradigmes de Programmation pour le Calcul Scientifique »











https://www.opensecurityarchitecture.org/
https://cyber.gouv.fr/


.06305/12/2025Module «Paradigmes de Programmation pour le Calcul Scientifique »













https://c4model.com/


.06405/12/2025Module «Paradigmes de Programmation pour le Calcul Scientifique »



.06505/12/2025Module «Paradigmes de Programmation pour le Calcul Scientifique »



.06605/12/2025Module «Paradigmes de Programmation pour le Calcul Scientifique »

Figure 24 : Architecture recommandée : poste sensible physique avec accès distant à un environnement usuel virtualisé

Extrait de anssi-guide-recommandations_architectures_systemes_information_sensibles_ou_diffusion_restreinte-v1.2



.06705/12/2025Module «Paradigmes de Programmation pour le Calcul Scientifique »






