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ABSTRACT

Understanding what affects software developer productivity can

help organizations choose wise investments in their technical and

social environment. But the research literature either focuses on

what correlates with developer productivity in ecologically valid

settings or focuses on what causes developer productivity in highly

constrained settings. In this paper, we bridge the gap by studying

software developers at Google through two analyses. In the first

analysis, we use panel data with 39 productivity factors, finding that

code quality, technical debt, infrastructure tools and support, team

communication, goals and priorities, and organizational change

and process are all causally linked to self-reported developer pro-

ductivity. In the second analysis, we use a lagged panel analysis to

strengthen our causal claims. We find that increases in perceived

code quality tend to be followed by increased perceived developer

productivity, but not vice versa, providing the strongest evidence

to date that code quality affects individual developer productivity.
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1 INTRODUCTION

Organizations want to maximize software engineering productivity

so that they can make the best software in the shortest amount

of time. While software engineering productivity łis essential for

numerous enterprises and organizations in most domainsž [50] and

can be examined through multiple lenses [29], understanding the

productivity of individual software developers can be especially

fruitful because it has the potential to be improved through many

actions (e.g. from tooling to process changes) and by many stake-

holders (from individual developers to executives). However, it is

difficult to know which actions will truly improve productivity in

an ecologically valid setting, that is, in a way that accurately char-

acterizes productivity in a realistic software development context.

This motivates our research question:

RQ:What causes improvements to developer produc-

tivity in practice?

A wide spectrum of prior research provides some answers to

this question, but with significant caveats. For example, at one end

of the research spectrum, Ko and Myers’ controlled experiment

showed that a novel debugging tool called Whyline helped Java de-

velopers fix bugs twice as fast as those using traditional debugging

techniques [30]. While this evidence is compelling, organizational

leaders are faced with many open questions about applying these

findings in practice, such as whether the debugging tasks performed

in that study are representative of the debugging tasks performed

by developers in their organizations. At the other end of the spec-

trum, Murphy-Hill and colleagues surveyed developers across three

companies, finding that job enthusiasm consistently correlated with

high self-rated productivity [36]. But yet again, an organizational

leader would have open questions about how to apply these results,

This work is licensed under a Creative Commons Attribution 4.0 Interna-

tional License.
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Table 1: Hypothetical cross sectional survey response data.

Productivity Rating Code Quality Rating

Aruj Somewhat productive Medium quality

Rusla Extremely productive Extremely high quality

Table 2: More hypothetical survey responses, collected 3

months after the data in Table 1. Plusses (+) and minuses (ś)

indicate the direction of the change since the prior survey.

Productivity Rating Code Quality Rating

Aruj Highly productive (+) High Quality (+)

Rusla Somewhat productive (ś) High Quality (ś)

such as whether some unmeasured third variable causes both high

productivity and high job enthusiasm.

More broadly, these examples illustrate the fundamental limita-

tions of prior approaches to understanding developer productivity.

On one hand, software engineering research that uses controlled ex-

periments can help show with a high degree of certainty that some

practices and tools increase productivity, yet such experiments are

by definition highly controlled, leaving organizations to wonder

whether the results obtained in the controlled environment will

also apply in their more realistic, messy environment. On the other

hand, research that uses field studies ś often with cross sectional

data from surveys or telemetry ś can produce contextually valid ob-

servations about productivity, but drawing causal inferences from

field studies that rival those drawn from experiments is challenging.

Our study builds on the existing literature about developer pro-

ductivity, contributing the first study to draw strong causal conclu-

sions in an ecologically valid context about what affects individual

developer productivity.

2 MOTIVATION

The paper’s main technical contribution ś the ability to draw

stronger causal inferences about productivity drivers than in prior

work ś is enabled by the use of the panel data analysis technique [25].

In this section, we motivate the technique with a running example.

Much of the prior work on developer productivity (Section 3)

relies on cross-sectional data. To illustrate the limitations of cross sec-

tional data, let us introduce an example. Consider a survey that asks

about respondents’ productivity and the quality of their codebase.

The survey is distributed at a large company, and two developers

respond, Aruj and Rusla. Let’s assume their responses are repre-

sentative of the developer population. Their survey responses are

shown in Table 1.

From this survey, we see that productivity correlates with code

quality. But we cannot confidently say that high code quality causes

high developer productivity, due in part to the following confound-

ing explanations [1]:

• Time-invariant effects. These are effects that have the

same influence over time. For example, if Rusla went to col-

lege and Aruj did not, from cross-sectional data, we cannot

distinguish between the effect of college and the effect of

code quality on productivity.

• Respondent-independent time effects. These are effects

that influence all respondents uniformly, such as seasonal

effects or company-wide initiatives. For example, prior to

the survey, perhaps all engineers were given their annual

bonus, artificially raising everyone’s productivity.

• Non-differentiated response effects. These are effects

where respondents will give the same or similar responses to

every survey question, sometimes known as straightlining.

For example, perhaps Aruj tends to choose the middle op-

tion to every question and Rusla tends to answer the highest

option for every question.

We use panel analysis to address these confounds, enabling

stronger causal inference than what can be obtained from cross sec-

tional data [25]. The power of panel data is that it uses data collected

at multiple points in time from the same individuals, examining

how measurements change over time.

To illustrate how panel data enables stronger causal inference,

let us return to the running example. Suppose we run the survey

again, three months later, and obtain the data shown in Table 2.

One interesting observation is that if we analyze Table 2 in isola-

tion, we notice that there’s not a correlation between productivity

and code quality ś both respondents report the same code quality,

regardless of their productivity. But more importantly, looking at

the changes in responses from Table 1 and Table 2, we see produc-

tivity changes are now correlated: Aruj’s increasing productivity

correlates with increasing code quality, and Rusla’s decreasing pro-

ductivity correlates with decreasing code quality.

Panel analysis rules out the three confounding explanations

present in the cross-sectional analysis:

• In the cross-sectional analysis, we could not determine if

Rusla’s high productivity was driven by her college edu-

cation. But in this panel analysis, we can rule out that ex-

planation, because college is a time invariant exposure ś it

theoretically would have the same effect on her productivity

in the first survey as in the second survey. This ability to

rule out other potential causes that are time invariant exists

whether or not the researcher can observe those potential

causes. While with cross-sectional analysis, researchers may

be able to control for these potential causes using control

variables, researchers have to anticipate and measure those

control variables during analysis. This is unnecessary with

panel analysis because time invariant factors are eliminated

by design.

• In the cross-sectional analysis, we could not determine if

productivity was driven by a recent annual bonus. This ex-

planation is ruled out in the panel analysis. If the annual

bonus had an effect, the change in productivity scores across

both participants would be uniform.

• In the cross-sectional analysis, we could not determine if

respondents were just choosing similar answers to every

question. This explanation is also ruled out with panel anal-

ysis. If respondents were choosing similar answers, there

would be no change in productivity scores, and thus we

would not see a correlation among the changes.
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The ability of panel analyses to draw relatively strong causal

inferences makes it a quasi-experimental method, combining some

of the advantages of experiments with those of field studies [24].

3 RELATED WORK

To answer research questions similar to ours, several researchers

previously investigated what factors correlate with developer pro-

ductivity. Petersen’s systematic mapping literature review describes

seven studies that quantify factors that predict software developer

productivity [39], factors largely drawn from the COCOMO II soft-

ware cost driver model [10]. For instance, in a study of 99 projects

from 37 companies, Maxwell and colleagues found that certain

tools and programming practices correlated with project produc-

tivity, as measured by the number of lines of written code per

month [33]. More broadly, a recent study explored what factors

correlate with individual developers’ self-reported productivity at

three companies [36]. In contrast to our study, these prior studies

report correlations with relatively weak causal claims.

Other researchers have been able to make stronger causal claims

about programmer productivity by running controlled experiments.

For instance, when Tosun and colleagues asked 24 professionals to

complete a simple programming task, either using test-driven devel-

opment (treatment group) or iterative test-last development (control

group), they found that treatment group participants were signif-

icantly more productive than control group participants, where

productivity was measured as the number of tests passed in a fixed

amount of time [49]. Such randomized controlled experiments are

considered a łgold standardž because they can make very strong

causal claims [8]. The challenge with such studies is that they are

expensive to run with high ecological validity. Consequently, such

studies typically use students as participants rather than profes-

sionals (e.g. [13, 44, 46]), use small problems and programs rather

than more realistic ones (e.g. [5, 35, 46]), and can only vary one or

two productivity factors per experiment (e.g. [14, 31, 42]). While

the study presented here cannot make as strong causal claims as

experiments, the present field study has higher ecological validity

than experimental studies.

To address these challenges, software engineering researchers

have been using causal inference techniques in field studies, where

stronger causal claims can be made than in studies with simple

correlations. The core of such studies is analyses that leverage

time series data, rather than cross-sectional data. For instance,

Wang and colleagues use Granger’s causality test [20] to infer that

women’s pull requests cause increases in those women’s follower

counts [51]. As another example, using the Bayesian CausalImpact

framework [6], Martin and colleagues show that 33% of app releases

caused statistically significant changes to app user ratings [32].

These papers used fine-grained time series data, which is not possi-

ble for the type of data described in this paper, and to our knowledge,

has not been applied to studies of developer productivity.

Panel analysis, another causal inference technique, has been

used by prior software engineering researchers. Qiu and colleagues

used GitHub panel data to show that łsocial capital impacts the

prolonged engagement of contributors to opensourcež [40]. Islam

and colleagues used panel data to show that distributed version

control systems łreduce the private costs for participants in an OSS

project and thus increases the number of participants, but decreases

the average level of contribution by individual participantsž [26].

Like these papers, we use panel data to make causal inferences, but

in our case, the inferences are about developer productivity.

4 PANEL ANALYSIS: METHODS

Towards answering our research question, we next describe our

data sources, dependent variables, independent variables, panel

data, and modeling design.

4.1 Data Sources

The data of this study comes from two sources: Google engineers’

logs data and a company-wide survey at Google. Neither source

was built specifically for the research we describe here, and so we

consider this opportunistic research.

4.1.1 Logs Data. We collected a rich data set from engineers’ logs

from internal tools, such as a distributed file system that records

developers’ edits, a build system, and a code review tool. This data

contains fine-grained histories of developers’ work, enabling us to

make accurate measurements of actual working behavior, such as

the time developers spend actively writing code. The data helps

us characterize developers’ work practices, such as what kinds of

development tasks they are doing, how long those tasks take, and

how long they are waiting for builds and tests to complete. Details

on these tools, how data is aggregated into metrics, measurement

validation, and ethical considerations of data collection can be found

elsewhere [27]. We describe the exact metrics we use in Section 4.3.

4.1.2 EngSat. The Engineering Satisfaction (EngSat) Survey is a

longitudinal program to: understand the needs of Google engi-

neers; evaluate the effectiveness of tools, process, and organization

improvements; and provide feedback to teams that serve Google

engineers. Every three months, the survey is sent out to one-third

of eligible engineers ś in one of five core engineering job roles,

have been at Google’s parent company for at least 6 months, and

below the łdirectorž level. The same engineers are re-surveyed

every three quarters, and a random sample of one-third of new

engineers is added each quarter so that all engineers are invited.

The survey questions cover a range of topics, from productivity to

tool satisfaction to team communication. Respondents are asked

to describe their experience in the 3 month period prior to taking

the survey. Before beginning the survey, respondents are informed

how the data is used and that participation is voluntary.

While EngSat response rates are typically between 30% and

40%, response bias does not appear to be a significant threat. We

know this because we analyzed two questions for response bias,

one on productivity and one on overall engineering experience

satisfaction. We found that EngSat tends to have lower response

rates for technical leads and managers, those who have been at

Google for a longer period, and for engineers from the San Francisco

Bay Area, where Google is headquartered. To estimate the impact

of non-response bias on a metric derived from EngSat responses,

we compare a bias-corrected version of the metric to its uncorrected

version and check for the difference. The bias-corrected metric is

calculated by reweighting EngSat responses with the propensity

score (a similarity measure [21]) of responding to EngSat, which is
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Figure 1: Quantitative features that predicted self-rated pro-

ductivity.

estimated based on factors such as developer tenure, work location,

and coding language and tools. We find that after correcting for this

non-response bias using propensity score matching, the percent of

engineers who responded favorably did not change significantly

for either question. For instance, adjusting for non-response bias,

productivity decreases relatively by 0.7%, which is too small to

reach statistical significance at the 95% level. These results were

consistent across the three rounds of EngSat that we analyzed.

4.2 Dependent Variable: Productivity

We use self-rated productivity from our survey as our dependent

variable. While subjective and objective measures of productivity

each have advantages and disadvantages, we chose a subjective

measure of productivity here both because it is straightforward

to measure in survey form and because it is used broadly in prior

research [15, 34, 36].

The EngSat survey asks the question: Overall, in the past three

months how productive have you felt at work at Google/Alphabet?

Respondents can choose "Not at all productive", "Slightly produc-

tive", "Moderately productive", "Very productive", or "Extremely

productive". We coded this variable from 1 (Not at all productive)

to 5 (Extremely productive).

Prior software engineering research has shown that subjec-

tive productivity correlates with objective measures of produc-

tivity [36, 37] as a way to establish convergent validity of question-

based productivity metrics (that is, how they relate to other mea-

sures of the same construct [7]), We sought to do the same by

correlating our subjective productivity measure below with sev-

eral objective measures of productivity. Rather than using a linear

correlation as used in prior work, we were open to the possibility

that relationships were non-linear, and thus we selected a random

forest as a classifier.

First, we created a simple random forest to predict a binary ver-

sion of self-rated productivity, where we coded łExtremely produc-

tivež and łVery productivež as productive, and the other values as

not productive. We then predicted this binary measure of self-rated

productivity using six quantitative productivity metrics measured

over a three month period. Two of the measures capture the amount

output produced over the fixed period:

• Total Number of Changelists. This represents the number of

changelists (CLs) that an engineer merged, after code review,

into Google’s main code repository.

• Total Lines of Code. Across all CLs an engineer merged, the

total number of lines of code changed.

Two measures capture the amount of time it takes an engineer to

produce one unit of output (a changelist):

• Median Active Coding Time. Across every CL merged, the

median time an engineer spent actively writing code per

CL [27].

• Median Wall-Clock Coding Time. The median wall-clock time

an engineer spent writing code per CL, that is, the time

elapsed between when the engineer starts writing code and

when they request the code be reviewed.

The remaining two measures captured non-productive activities,

that is, how much time an engineer spends waiting per unit of

output (a changelist):

• Median Wall-Clock Review Time. The median wall-clock time

an engineer spent waiting for code review per CL.

• Median Wall-Clock Merge Time. The median wall-clock time

an engineer waited between approval for merging and actu-

ally merging per CL.

We gathered the above data over 6 consecutive quarters from

2018Q1 to 2019Q2. For each quarter, we linked an engineer’s subjec-

tive measure of productivity to the above five quantitative measures.

Since engineers are invited to take our survey once every 3 quarters,

a single engineer may be represented at most twice in this data set.

In total, we had 1958 engineer data points for our model.

After randomly selecting 10% of the data for validation, themodel

had 83% precision and 99% recall, suggesting a substantial relation-

ship between quantitative and qualitative productivity measures.

Looking at the importance of each quantitative metric in classify-

ing developers in the model (Figure 1), we see that Median Active

Coding Time was the most predictive quantitative feature. This

aligns with Meyer and colleagues’ finding that Microsoft engineers

view coding as their most productive activity [34].

4.3 Independent Variables

To predict the dependent variable, we started with 42 independent

variables ś reduced to 39 after a multicolinearity check (Section 4.6)

ś available from the survey and logs data. Since survey respondents

are asked to report on their experiences from the three months

prior to the survey, we collected log data for the corresponding

three month period. While many metrics could be analyzed, we

selected metrics that were relatively straightforward to collect and

that appeared plausibly related to individual productivity, based on

consultationwith internal subject matter experts within Google that

were experienced with building and deploying developer metrics.

Below, we group independent variables into six categories, de-

scribe each variable, and link them to prior work. We give each

variable a short name (in parentheses) to make referencing them

easier in the remainder of the paper. Full survey questions and

response scales are available in the Appendix.

4.3.1 Code Quality & Technical Debt. The first category of poten-

tial drivers of productivity are those relating to code quality and

technical debt. Based on experience, DeMarco and Lister claim that

software quality, generally speaking, łis a means to higher pro-

ductivityž [11]. In an experiment, Schankin and colleagues found

that participants found errors 14% faster when descriptive iden-

tifier names were used [45]. Studying small industrial programs
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written in the 1980s, Gill and Kemerer found that code complex-

ity correlates with software maintenance productivity [17]. Based

on interviews and surveys with professional software developers,

Besker and colleagues found that technical debt correlates nega-

tively with developer productivity [3, 4].

We measured code quality and technical debt with 5 subjective

factors from our survey:

• Code Quality Satisfaction (sat. with project code quality, sat.

with dependency code quality)

• Code Technical Debt (project tech debt)

• Dependency Technical Debt (dependency tech debt)

• Technical Debt Hindrance (tech debt hindrance)

4.3.2 Infrastructure Tools & Support. The next category of poten-

tial drivers of productivity are issues relating to tools and infrastruc-

ture. Prior work showed that using łthe best tools and practicesž

was the strongest correlate of individual productivity at Google,

though not a significant correlate at two other companies [36].

Storey and colleagues also found that Microsoft developers’ pro-

cesses and tools correlated with individual productivity [47].

This category had 6 objective and 12 subjective measures:

• Tools, infrastructure and service satisfaction (sat. with infra &

tools)

• Tools and infrastructure choice (choices of infra & tools)

• Tools and infrastructure innovativeness (innovation of infra

& tools)

• Tools and infrastructure ease (ease of infra & tools)

• Tools and infrastructure frustration (frustration of infra &

tools)

• Developer stack change (change of tool stack)

• Internal documentation support (doc. support)

• Internal documentation hindrance (doc. hindrance)

• Build & test cycle hindrance (build & test cycle hindrance)

• Build latency satisfaction (sat. with build latency)

• 50th and 90th percentile of build duration (p50 build time, p90

build time)

• % of long builds per week (% of long builds)

• 50th and 90th percentile of test duration (p50 test time, p90

test time)

• % of long tests per week (% of long tests)

• Learning hindrance (learning hindrance)

• Migration hindrance (migration hindrance)

4.3.3 Team Communication. The next category of drivers of pro-

ductivity are issues relating to team communication. In a survey

of knowledge workers, Hernaus and Mikulić found that social job

characteristics (e.g. group cooperation) correlated with contextual

job performance [23]. More specifically, in software engineering,

Chatzoglou and Macaulay interviewed software developers, finding

that most believed that communication among team members was

very important to project success [9]. Studying communication

networks quantitatively, Kidane and Gloor found that in the Eclipse

project, a higher frequency of communication between developer

correlated positively with performance and creativity [28].

To measure team communication in our study, we examined 9

objective measures and 1 subjective measure:

• 50th and 90th percentile of rounds of code review (p50 code

review rounds, p90 code review rounds)

• 50th and 90th percentile of total wait time of code review (p50

code review wait time, p90 code review wait time)

• 50th and 90th percentile of code reviewers’ organizational dis-

tances from author (p50 review org distance, p90 review org

distance)

• 50th and 90th percentile of code reviewers’ physical distances

from author (p50 review physical distance, p90 review phys-

ical distance)

• Physical distance from direct manager (distance from man-

ager)

• Code review hindrance (slow code review)

4.3.4 Goals and Priorities. Prior research suggests that changing

goals and priorities correlate with software engineering outcomes.

Surveying 365 software developers, The Standish Group found that

changing requirements was a common stated reason for project

failure [48]. Meyer and colleagues found that one of the top 5 most

commonly mentioned reasons for a productive workday was having

clear goals and requirements [34].

We measure this category with 1 subjective measure:

• Priority shift (priority shift)

4.3.5 Interruptions. Meyer and colleagues found that two of the

top five most commonly mentioned reasons for a productive work-

day by 379 software developers was having no meetings and few

interruptions [34]. Similarly, a prior survey of Google engineers

showed that lack of interruptions and efficient meetings correlated

with personal productivity, as did use of personal judgment [36].

We measure this category with 3 objective measures:

• 50th and 90th percentile of total time spent on incoming meet-

ings per week (p50 meeting time, p90 meeting time)

• Total time spent on any meetings per week (total meeting

time)

4.3.6 Organizational and Process Factors. Finally, outside of soft-

ware engineering, organizational and process factors correlate with

a variety of work outcomes. For example, according to healthcare

industry managers, reorganizations can result in workers’ sense of

powerlessness, inadequacy, and burnout [19]. Although not well-

studied in software engineering, based on personal experience,

DeMarco and Lister [11] and Armour [2] point to bureaucracy and

reorganizations as leading to poor software engineering outcomes.

This category had 2 subjective and 3 objective measures:

• Process hindrance (complicated processes)

• Organizational hindrance (team & org change)

• Number of times when engineers’ direct manager changes but

colleagues do not change (reorg direct manager change)

• Number of times when both an engineer’s direct manager and

colleagues change simultaneously (non-reorg direct manager

change)

• Number of different primary teams the engineer has (primary

team change)
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4.4 From Variables to Panel Data

Since the survey was sent out to the same cohort of engineers every

three quarters, we have accumulated a panel data set with two

observations in different points of time for each engineer. After

joining each engineer’s survey data with their logs data, we have

complete panel data for 2139 engineers.

4.5 Modeling

Using the panel data set, we applied a quasi-experiment method of

panel data analysis to analyze the relationship between engineers’

perceived overall productivity and the independent variables. In

this paper, we use a fixed-effect model to analyze panel data at the

developer level. The model is

𝑦𝑖𝑡 = 𝛼𝑖 + 𝜆𝑡 + 𝛽𝐷𝑖𝑡 + 𝜖𝑖𝑡 (1)

where

• 𝑦𝑖𝑡 is the dependent variable y, self-rated productivity for

developer i at time t.

• 𝛼𝑖 is unobserved engineer time-invariant effects, such as

education and skills.

• 𝜆𝑡 is the engineer-independent time effect, such as company-

wide policy changes and seasonalities at time t.

• 𝐷𝑖𝑡 = [𝐷1

𝑖𝑡
, 𝐷2

𝑖𝑡
, . . . , 𝐷𝑛

𝑖𝑡
] are observed productivity factors

for developer i at time t.

• 𝛽 = [𝛽1, 𝛽2, . . . , 𝛽𝑛] are the causal effects of productivity

factors 𝐷𝑖𝑡 at time t.

• 𝜖𝑖𝑡 is the error term at time t.

To estimate the fixed-effect model, we differenced equation (1)

between the two periods and have

Δ𝑦𝑖𝑡 = Δ𝜆𝑡 + 𝛽Δ𝐷𝑖𝑡 + Δ𝜖𝑖𝑡 (2)

where Δ𝜆𝑡 = 𝛾0 + 𝛾1𝑇 . The Δ prefix denotes the change from one

time period to the next. T is a categorical variable representing

panels in different time periods, if we have more than one panel.

Note that after differencing, 𝛼𝑖 is cancelled out and Δ𝜆𝑡 can be ex-

plicitly controlled by transforming it to a series of dummy variables.

Therefore, factors in 𝛼𝑖 and 𝜆𝑡 do not confound the results.

We then estimated equation (2) using Feasible Generalized Least

Squares (FGLS); we chose FGLS to overcome heteroskedasticity,

serial correlation between residuals, and for efficiency compared to

Ordinary Least Square estimators. The parameters of interest are

the 𝛽 terms. The hypothesis we are testing is that 𝛽 = 0 for all 𝐷𝑖𝑡 .

Except for binary variables and percentage variables, we transform

𝐷𝑖𝑡 into 𝑙𝑜𝑔(𝐷𝑖𝑡 ). The benefit of taking a natural log is to allow

us to interpret estimates of regression coefficients (𝛽 terms) as an

elasticity, where a percent change in a dependent variable can be

interpreted as a percent change in an independent variable. This

allows for both a uniform and intuitive interpretation of the effects

across both logs-based and survey-based dependent variables.

To liberally capture causal relationships between productivity,

we use a p-value cutoff of 0.1 to define łstatistically significantž

results. If the reader prefers a more stringent cutoff or using a false

discovery correction, we facilitate this by reporting p-values.

Analysis code was written in R by the first author using the

packages glmnet, randomForest, binom, car, and plm. All code was

peer-reviewed using Google’s standard code review process [43].

4.6 Multicollinearity

To check for multicollinearity among the independent variables, we

calculated Variance Inflation Factor (VIF) scores on these metrics.

We found some build latency metrics were highly correlated and

thus may cause a multicollinearity problem. After consulting with

experts in our build system, we removed three build latency metrics

that had a VIF score above 3 (p50 build time, p50 test time, and % of

long tests), a threshold recommended by Hair and colleagues [22].

The final list of 39 metrics all have VIF scores below 3.

4.7 Threats to Validity

Like all empirical studies, ours is imperfect. In this section, we

describe threats to the validity of our study, broken down into

content, construct, internal, and external validity threats.

4.7.1 Content. Although our study examines a variety of facets of

productivity, it does not examine every single aspect of productivity

or of factors that may influence productivity.

With respect to productivity itself, we measure it with a single

survey question. On one hand, the question itself is worded broadly

and our validation (Section 4.2) shows that it correlates with other

objective measures of productivity. On the other hand, as evidenced

by the fact that the correlation was imperfect, it is likely that our

question did not capture some aspects of developer productivity.

As one example, our question was only focused on productivity of

an individual developer, yet productivity is often conceptualized

from a team, group, or company perspective [16].

Likewise, our set of productivity factors ś like code quality and

build speed ś are incomplete, largely because we used conveniently

available and subjectively-selected metrics and because we reused

an existing long-running survey. In comparison, prior work, which

used a custom-built cross-sectional survey, found that two of the

strongest correlates with individual productivity were job enthusi-

asm and teammates’ support for new ideas [36]. Neither of these two

productivity factors were explored in the present survey, demon-

strating that our productivity factors are incomplete.

4.7.2 Construct. Our EngSat survey measures a variety of theoret-

ical concepts, and the questions contained in it contain a range of

construct validity. For instance, while we have demonstrated some

amount of convergent validity of our productivity question, respon-

dents to the question may have interpreted the word łproductivityž

differently ś some may have interpreted it to refer only to the quick

completion of work items, while others might take a more expan-

sive view to include aspects such as quality. While we have tried to

limit the impact of different interpretations of EngSat questions by

piloting variations, gathering interpretive feedback, and refining

wording iteratively, such issues are unavoidable threats.

Another specific threat to construct validity is inconsistent and

ambiguous question wording. For instance, while respondents are

advised at the beginning of the survey that they should report on

experiences over the last 3 months, some questions (but not all) re-

inforce this scoping by beginning with łIn the last three months. . . ž.

As another example of inconsistency, while most questions ask only

about experiences (which our models use to predict productivity),

three questions ask about the relationship between experience and

perceived productivity, such as łhow much has technical debt. . .
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Table 3: Metrics’ relationship with self-rated productivity.

Metric Effect size p-value

Code Quality & Technical Debt

sat. with project code quality 0.105 <0.001

sat. with dependency code quality -0.013 0.505

project tech debt 0.078 <0.001

dependency tech debt 0.042 0.012

tech debt hindrance -0.009 0.459

Infrastructure Tools & Support

sat. with infra & tools 0.113 <0.001

choices of infra & tools 0.020 0.083

innovation of infra & tools 0.106 <0.001

ease of infra & tools -0.018 0.352

frustration of infra & tools 0.002 0.952

change of tool stack 0.019 0.098

doc. support -0.009 0.664

doc. hindrance -0.005 0.715

build and test cycle hindrance 0.029 0.064

sat. with build latency 0.018 0.295

p90 build time -0.024 0.019

p90 test time -0.001 0.836

% of long builds 0.028 0.599

learning hindrance 0.038 0.006

migration hindrance -0.001 0.929

Team Communication

p50 code review rounds 0.007 0.081

p90 code review rounds -0.014 0.058

p50 code review wait time -0.0006 0.875

p90 code review wait time 0.0019 0.625

p50 review org distance -0.0008 0.424

p90 review org distance -0.0002 0.880

p50 review physical distance 0.0012 0.261

p90 review physical distance 0.0013 0.518

distance from manager 0.001 0.209

slow code review 0.051 0.004

Goals & Priorities

priority shift 0.077 <0.001

Interruptions

p50 meeting time 0.014 0.502

p90 meeting time 0.008 0.701

total meeting time -0.009 0.692

Organizational Change and Process

complicated processes 0.027 0.067

team and org change 0.032 0.023

reorg direct manager changes -0.002 0.086

non-reorg direct manager change -0.002 0.525

primary team change 0.014 0.086

hindered your productivity?ž. As an example of ambiguity, several

questions ask about engineers’ experiences with the project they

work on, but respondents interpret for themselves what a "project"

is and, if they work on multiple projects, which one to report on.

4.7.3 Internal. As we argue in this paper, our use of panel analysis

helps draw stronger causal inferences than those that can be drawn

from cross-sectional data. However, the most significant caveat

to our ability to draw causal inferences is time variant effects. In

contrast to time invariant effects (e.g., prior education and demo-

graphics), time variant effects may vary over the study period. For

instance, in our running example, if Aruj lost a mentor and Rusla

gained a mentor between the two surveys, our analysis could not

rule out mentorship as a cause of increased productivity or code

quality. Thus, our analysis assumes that effects on individual en-

gineers are time invariant. Violations of this assumption threaten

the internal validity of our study.

Another internal threat to the validity of our study is partici-

pants who chose not to answer some or all questions in the survey.

While our analysis of non-response bias (Section 4.1.2) showed that

two survey questions were robust to non-response among several

dimensions like level and tenure, non-response is still a threat. For

one, respondents and non-respondents might differ systematically

on some unmeasured or dimension, such as how frequently they

get feedback from peers. Likewise, respondents who choose not

to answer a question will be wholly excluded from our analysis,

yet such participants might differ systematically from those who

answered every question.

Another threat to internal validity is that we analyzed data for

only two panels per engineer. More panels per engineer would

increase the robustness of our results.

4.7.4 External. As the title of this paper suggests, our study was

conducted only at Google and generalizability of our results beyond

that context is limited. Google is a large, US-headquartered, multi-

national, and software-centric company where engineers work on

largely server and mobile code, with uniform development tooling,

and in a monolithic repository. Likewise, during the study period

Google developers mostly worked from open offices, before the

global COVID19 pandemic when many developers shifted to re-

mote or hybrid work. While results would vary if this study were

replicated in other organizations, contexts that resemble ours are

most likely to yield similar results.

5 PANEL ANALYSIS: RESULTS

5.1 Factors Causally Linked to Productivity

Panel data analysis suggested that 16 out of the 39 metrics have a

statistically significant causal relationship with perceived overall

productivity, as listed in Table 3. The overall adjusted R-squared

value for the model was 0.1019. In Table 1, the Effect size should

be read as a percent change in the dependent variable is associated

with that percent change in the independent variable. For instance,

for code quality, a 100% change in project code quality (from łVery

dissatisfiedž to łVery satisfiedž to quality) is associated with a 10.5%

increase in self-reported productivity. To summarize Table 3:

• For code quality, we found that perceived productivity is

causally related to satisfaction with project code quality

but not causally related to satisfaction with code quality

in dependencies. For technical debt, we found perceived

productivity is causally related to perceived technical debt

both within projects and in their dependencies.
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• For infrastructure, several factors closely related to internal

infrastructure and tools showed a significant causal relation-

ship with perceived productivity:

ś Engineers who reported their tools and infrastructure

were not innovative were more likely to report lower pro-

ductivity.

ś Engineers who reported the number of choices were either

too few or too many were likely to report lower produc-

tivity. We further tested whether one of the two (łtoo fewž

or łtoo manyž) matters but not the other, by replacing this

variable with two binary variables, one representing the

case of łtoo fewž choices and the other representing the

case of łtoo manyž choices. The results suggest that both

cases are causally related to perceived productivity.

ś Engineers who reported that the pace of changes in the

developer tool stack was too fast or too slow were likely

to report lower productivity. Similarly, we tested the two

cases, łtoo fastž or łtoo slowž, separately by replacing

this variable with two binary variables, one representing

the case of łtoo fastž and the other representing the case

of łtoo slowž. Results suggested both cases matter for

perceived productivity.

ś Engineers who were hindered by learning a new platform,

framework, technology, or infrastructure were likely to

report lower productivity.

ś Engineers who had longer build times or reported being

hindered by their build & test cycle were more likely to

report lower productivity.

• For team communication, a metric related to code reviewwas

significantly causally related with perceived productivity.

Engineers who had more rounds of reviews per code review

or reported being hindered by slow code review processes

were likely to report lower productivity.

• For goals and priorities, engineers hindered by shifting project

priorities were likely to report lower productivity.

• Organizational factors were linked to perceived productivity:

ś Engineers who had more changes of direct managers were

more likely to report lower productivity.

ś Engineers who reported being hindered for team and or-

ganizational reasons, or by complicated processes were

more likely to report lower productivity.

5.2 Quadrant Chart

To visualize these factors in terms of their relative effect size and

statistical significance, we plot them in a quadrant chart (Figure 2).

The chart excludes factors whose p-value is greater than 0.1. The

factors have various scales from satisfaction score to time duration,

so to make their effect size comparable, we standardized metrics by

subtracting each data point by its mean and dividing it by its stan-

dard deviation. The x axis is the absolute value of the standardized

effect size. The y axis is p-values.

The top five factors in terms of relative effect size are satisfaction

with project code quality, hindrance of shifting priorities, technical

debt in projects, innovation of infrastructure, and tools and overall

satisfaction with infrastructure and tools.

6 LAGGED PANEL ANALYSIS: METHODS

The panel data analysis we conducted so far suggests satisfaction

with code quality within projects is the strongest productivity factor

among the 39 we studied, based on standardized effect size and

p-value.

However, because the observed changes in factors coincided

during the same time period, such conventional panel data analysis

can tell which factors are causally related to overall productivity,

but it does not tell us the direction of the causality.

So, does better code quality cause increasing productivity, or does

increasing productivity cause improved code quality? Both linkages

are theoretically plausible: on one hand, code quality might increase

productivity because higher code quality may make it easier and

faster to add new features; on the other hand, high productivity

might increase quality code because engineers have free time to

spend on quality improvement.

To verify the direction of the causal relationship between project

code quality and productivity, we conducted another panel data

analysis using lagged panel data. In this analysis, we focus only

on the causal relationship between code quality and productivity.

Although such an analysis is possible for other factors, it is nonethe-

less laborious, as we shall see shortly. Thus, we focus our lagged

analysis on only these two variables, which had the strongest causal

relationship in our prior analysis.

In short, we verified the direction of the linkage between project

code quality and productivity by checking if the change in one fac-

tor is associated with the change in the other factor in the following

period. The idea is that if project code quality affects productiv-

ity, we expect to see that changes in project code quality during

time T-1 are associated with changes in productivity during time T.

Since self-reported productivity is not available for two consecutive

quarters (since each respondent is sampled only once every three

quarters), we switch to logs-based metrics to measure productivity.

Complementing our prior analysis based on self-ratings with a logs-

based one has the additional benefit of increasing the robustness of

our results.

More formally, we tested two competing hypotheses, Hypothesis

QaP (Quality affects Productivity) and PaQ (Productivity affects

Quality). Hypothesis QaP is that the changes in project code quality

during time T-1 are associated with changes in productivity during

time T. This implies improvements in project code quality lead to

better productivity. Hypothesis PaQ is that changes in productivity

in time T-1 are associated with changes in project code quality in

time T. This implies better productivity leads to an improvement

in project code quality.

Hypothesis QaP: Changes in code quality during time T-1 are

correlated with changes in productivity during time T. The statisti-

cal model is

Δ𝑃𝑖𝑡 = 𝛼 + 𝛽Δ𝑄𝑖𝑡−1 + Δ𝜖𝑖𝑡 (4)

where Δ𝑄𝑖𝑡−1 is the change in code quality at time t-1 and Δ𝑃𝑖𝑡 is

the following change in logs-based productivity metrics at time t.

Given the available data, we use the difference between Q3 2018

and Q2 2019 to measure Δ𝑄𝑖𝑡−1 and the difference between Q3 2018

and Q3 2019 to measure Δ𝑃𝑖𝑡 .
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Figure 2: Quadrant of productivity factors in effect size and statistical significance

Hypothesis PaQ: Changes in productivity in time T-1 are cor-

related with changes in code quality in time T. The statistical model

is

Δ𝑄𝑖𝑡 = 𝛼 + 𝛽Δ𝑃𝑖𝑡−1 + Δ𝜖𝑖𝑡 (5)

where Δ𝑃𝑖𝑡−1 is the change in logs-based productivity at time t-1

and Δ𝑄𝑖𝑡 is the following change in code quality at time t. Given

the availability of data, we use the difference between Q3 2018 and

Q2 2019 to measure Δ𝑃𝑖𝑡−1 and the difference between Q3 2018 and

Q1 2019 to measure Δ𝑄𝑖𝑡 .

For this analysis, we had full lagged panel data for 3389 engineers.

7 LAGGED PANEL ANALYSIS: RESULTS

Our results support hypothesis QaP but not hypothesis PaQ. We

found that a 100% increase of satisfaction rating with project code

quality (i.e. going from a rating of ‘Very dissatisfied’ to ‘Very sat-

isfied’) at time T-1 was associated with a 10% decrease of median

active coding time per CL, a 12% decrease of median wall-clock

time from creating to mailing a CL, and a 22% decrease of median

wall-clock time from submitting to deploying a CL at time T. On

the other hand, we did not find any evidence to support hypothesis

PaQ; changes in satisfaction with project code quality in time T

were not associated with any of the productivity metrics in time

T-1. See Appendix for a table containing this data and descriptions

of each variable. Therefore, returning to our research question,

we conclude that changes in satisfaction with project code quality

cause changes in perceived overall productivity.

8 DISCUSSION

Our findings provide practical guidance for organizations trying

to improve individual developer productivity by providing a list of

amenable factors that are causally linked to productivity. Specifi-

cally, our panel analysis shows that these factors are: code quality,

technical debt, infrastructure tools and support, team communica-

tion, goals and priorities, and organizational change and process.

Our quadrant chart shown in Figure 2, which we originally cre-

ated for an executive stakeholder audience within Google, allows

practitioners to choose highly impactful productivity factors to act

on. Factors at the top of the chart are those with high statistical

significance (and low standard error), so practitioners can read

those as the most consistent productivity factors. Factors on the

right are the ones with the largest standardized effect size, so these

supply the łbiggest bang for the buckž. Taken together, the factors

in the upper right quadrant are the ones most promising to improve

productivity at Google. For instance, giving teams time to improve

code quality, reduce technical debt, and stabilize priorities would

be good candidate initiatives for improving individual developer

productivity.
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We found that several factors did not have a statistically signifi-

cant relationship with perceived productivity, notably:

• For documentation, perceived productivity was not causally

linked to reported poor or missing documentation (doc. hin-

drance) or the frequency of documentation meeting needs

(doc. support). This is surprising, given that GitHub’s 2017

survey of 5,500 developers found that łincomplete or confus-

ing documentationž was the most commonly encountered

problem in open source [18]. GitHub’s findings are consis-

tent with findings at Microsoft [47] and at Googleś EngSat

respondents often report łpoor or missing documentationž

as one of the top three hindrances to their own productiv-

ity. However, the results in this paper suggest that there

is no causal relationship between developer productivity

and documentation, despite developers’ reports that it is

important to them. One way to explain this finding is that

documentation may not impact productivity, but it may yet

have other positive benefits, such as to łcreate inclusive

communitiesž [18].

• For meetings, we found that perceived productivity was

not causally linked to time spent on either incoming meet-

ings(p50 meeting time, p90 meeting time) or all types of meet-

ings (total meeting time). This is also surprising, given that

prior research found in a survey of Microsoft engineers

that meetings were the most unproductive activity for engi-

neers [34]. The contradictory results could be explained by

differences between the studies: our panel analysis enables

causal reasoning (vs correlational), more engineers were rep-

resented in our dataset (2139 vs 379), and we used objective

meeting data from engineers’ calendars (vs. self-reports).

• For physical and organizational distances, perceived produc-

tivity was not causally linked to physical distance from direct

manager (distance from manager), or physical (p50 review

physical distance, p90 review physical distance) or organiza-

tional distances from code reviewers(p50 review org distance,

p90 review org distance). This is in contrast to Ramasubbu and

colleagues’ cross-sectional study, which found that łas firms

distribute their software development across longer distance

(and time zones) they benefit from improved project level

productivityž [41]. As with the prior differences, explana-

tory factors may include differences in organization and a

methodology: individual productivity versus organizational

productivity, single company versus multiple companies,

and panel versus cross-sectional analysis.

As we mentioned, a threat to these results is the threat of reverse

causality ś the statistics do not tell us whether each factor causes

productivity changes or vice versa. We mitigated this threat for

code quality using lagged panel analysis, providing compelling

evidence that high code quality increases individual developers’

productivity.

Within Google, our results have driven organizational change

around code quality and technical debt as a way to improve devel-

oper productivity:

• Since its creation in May 2019, a version of this report has

been viewed by more than 1000 unique Google employees

with more than 500 comments.

• EngSat results helped motivate two code quality conferences

for Google engineers with 4,000 internal attendees and more

than 15,000 views of live and on-demand talks.

• The research motivated the creation of two initiatives ś a

Technical Debt Maturity Model (akin to the Capability Ma-

turity Model [38]) and Technical Debt Management Frame-

work ś to help teams improve technical debt assessment and

management.

• Several teams and organizations set Objectives and Key Re-

sults (OKRs) [12] to improve technical debt in their work-

groups.

• Google introduced łThe Healthysž, an award where teams

submit a two page explanation of a code quality improvement

initiative they’ve performed. Using an academic reviewing

model, outside engineers evaluated the impact of nearly 350

submissions across the company. Accomplishments include

more than a million lines of code deleted. In a survey sent to

award recipients, of 173 respondents, most respondents re-

ported that they mentioned the award in the self-evaluation

portion of their performance evaluation (82%) and that there

was at least a slight improvement in how code health work

is viewed by their team (68%) and management (60%).

Although difficult to ascribe specifically to this research and the

above initiatives that it has influenced, EngSat has revealed several

encouraging trends between when the report was released inter-

nally in the second quarter of 2019 and the first quarter of 2021: The

proportion of engineers feeling łnot at all hinderedž by technical

debt has increased by 27%. The proportion of engineers feeling sat-

isfied with code quality has increased by about 22%. The proportion

of engineers feeling highly productive at work has increased by

about 18%.

9 CONCLUSION

Prior research has made significant progress in improving our un-

derstanding of what correlates with developer productivity. In this

paper, we’ve advanced that research by leveraging time series data

to run panel analyses, enabling stronger causal inference than was

possible in prior studies. Our panel analysis suggests that code

quality, technical debt, infrastructure tools and support, team com-

munication, goals and priorities, and organizational change and

process are causally linked to developer productivity at Google.

Furthermore, our lagged panel analysis provides evidence that im-

provements in code quality cause improvements in individual pro-

ductivity. While our analysis is imperfect ś in particular, it is only

one company and uses limited measurements ś it nonetheless can

help engineering organizations make informed decisions about

improving individual developer productivity.

ACKNOWLEDGMENT

Thanks to Google employees for contributing their EngSat and logs

data to this study, as well as the teams responsible for building the in-

frastructure we leverage in this paper. Thanks in particular to Adam

Brown, Michael Brundage, Yuangfang Cai, Alison Chang, Sarah

D’Angelo, Daniel Dressler, Ben Holtz, Matt Jorde, Kurt Kluever,

Justin Purl, Gina Roldan, Alvaro Sanchez Canudas, Jason Schwarz,

Simone Styr, Fred Wiesinger, and anonymous reviewers.

1311



What Improves Developer Productivity at Google? Code Quality ESEC/FSE ’22, November 14ś18, 2022, Singapore, Singapore

REFERENCES
[1] Joshua D. Angrist and Jörn-Steffen Pischke. 2008. Mostly harmless econometrics:

An empiricist’s companion. Princeton University Press.
[2] Phillip Armour. 2003. The Reorg Cycle. Commun. ACM 46, 2 (2003), 19.
[3] Terese Besker, Hadi Ghanbari, Antonio Martini, and Jan Bosch. 2020. The influ-

ence of Technical Debt on software developer morale. Journal of Systems and
Software 167 (2020), 110586. https://doi.org/10.1016/j.jss.2020.110586

[4] Terese Besker, Antonio Martini, and Jan Bosch. 2019. Software developer produc-
tivity loss due to technical debtÐa replication and extension study examining
developers’ development work. Journal of Systems and Software 156 (2019), 41ś61.
https://doi.org/10.1016/j.jss.2019.06.004

[5] Larissa Braz, Enrico Fregnan, Gül Çalikli, and Alberto Bacchelli. 2021. Why
Don’t Developers Detect Improper Input Validation?’; DROP TABLE Papers;ś
. In International Conference on Software Engineering. IEEE, 499ś511. https:
//doi.org/10.1109/ICSE43902.2021.00054

[6] K.H. Brodersen, F. Gallusser, J. Koehler, N. Remy, and S.L. Scott. 2015. Inferring
causal impact using Bayesian structural time-series models. The Annals of Applied
Statistics 9, 1 (2015), 247ś274. https://doi.org/10.1214/14-AOAS788

[7] Kevin D Carlson and Andrew O Herdman. 2012. Understanding the impact of
convergent validity on research results. Organizational Research Methods 15, 1
(2012), 17ś32. https://doi.org/10.1177/1094428110392383

[8] Nancy Cartwright. 2007. Are RCTs the gold standard? BioSocieties 2, 1 (2007),
11ś20. https://doi.org/10.1017/S1745855207005029

[9] Prodromos D. Chatzoglou and Linda A.Macaulay. 1997. The importance of human
factors in planning the requirements capture stage of a project. International
Journal of Project Management 15, 1 (1997), 39ś53. https://doi.org/10.1016/S0263-
7863(96)00038-5

[10] Bradford Clark, Sunita Devnani-Chulani, and Barry Boehm. 1998. Calibrating
the COCOMO II post-architecture model. In Proceedings of the International
Conference on Software Engineering. IEEE, 477ś48. https://doi.org/10.1109/ICSE.
1998.671610

[11] Tom DeMarco and Tim Lister. 2013. Peopleware: productive projects and teams.
Addison-Wesley.

[12] John Doerr. 2018. Measure what matters: How Google, Bono, and the Gates Foun-
dation rock the world with OKRs. Penguin.

[13] Davide Falessi, Natalia Juristo, Claes Wohlin, Burak Turhan, Jürgen Münch,
Andreas Jedlitschka, and Markku Oivo. 2018. Empirical software engineering
experts on the use of students and professionals in experiments. Empirical
Software Engineering 23, 1 (2018), 452ś489. https://doi.org/10.1007/s10664-017-
9523-3

[14] Petra Filkuková and Magne Jùrgensen. 2020. How to pose for a professional
photo: The effect of three facial expressions on perception of competence of
a software developer. Australian Journal of Psychology 72, 3 (2020), 257ś266.
https://doi.org/10.1111/ajpy.12285

[15] Denae Ford, Margaret-Anne Storey, Thomas Zimmermann, Christian Bird, Sonia
Jaffe, Chandra Maddila, Jenna L. Butler, Brian Houck, and Nachiappan Nagappan.
2021. A Tale of Two Cities: Software Developers Working from Home during
the COVID-19 Pandemic. ACM Trans. Softw. Eng. Methodol. 31, 2, Article 27 (dec
2021), 37 pages. https://doi.org/10.1145/3487567

[16] Nicole Forsgren, Margaret-Anne Storey, Chandra Maddila, Thomas Zimmermann,
Brian Houck, and Jenna Butler. 2021. The SPACE of Developer Productivity:
There’s more to it than you think. Queue 19, 1 (2021), 20ś48. https://doi.org/10.
1145/3454122.3454124

[17] Geoffrey K. Gill and Chris F. Kemerer. 1991. Cyclomatic complexity density and
software maintenance productivity. IEEE transactions on software engineering 17,
12 (1991), 1284. https://doi.org/10.1109/32.106988

[18] GitHub. 2017. Open Source Survey. https://opensourcesurvey.org/2017/
[19] Ann-Louise Glasberg, Astrid Norberg, and Anna Söderberg. 2007. Sources of

burnout among healthcare employees as perceived by managers. Journal of
Advanced nursing 60, 1 (2007), 10ś19. https://doi.org/10.1111/j.1365-2648.2007.
04370.x

[20] C. W. Granger. 1969. Investigating causal relations by econometric models and
cross-spectral methods. Econometrica: Journal of the Econometric Society (1969),
424ś438. https://doi.org/10.2307/1912791

[21] Shenyang Guo and Mark W. Fraser. 2014. Propensity score analysis: Statistical
methods and applications. Vol. 11. SAGE publications.

[22] Joseph F Hair, Jeffrey J Risher, Marko Sarstedt, and Christian M Ringle. 2019.
When to use and how to report the results of PLS-SEM. European Business Review
(2019). https://doi.org/10.1108/EBR-11-2018-0203

[23] Tomislav Hernaus and Josip Mikulić. 2014. Work characteristics and work per-
formance of knowledge workers. EuroMed Journal of Business (2014). https:
//doi.org/10.1108/EMJB-11-2013-0054

[24] Cheng Hsiao. 2007. Panel data analysisÐadvantages and challenges. TEST 16, 1
(2007), 1ś22. https://doi.org/10.1007/s11749-007-0046-x

[25] Cheng Hsiao. 2022. Analysis of panel data. Cambridge University Press.
[26] Mazhar Islam, Jacob Miller, and Haemin Dennis Park. 2017. But what will it cost

me? How do private costs of participation affect open source software projects?
Research Policy 46, 6 (2017), 1062ś1070. https://doi.org/10.1016/j.respol.2017.05.

005
[27] Ciera Jaspan, Matt Jorde, Carolyn Egelman, Collin Green, Ben Holtz, Edward

Smith, Maggie Hodges, Andrea Knight, Liz Kammer, Jill Dicker, et al. 2020. En-
abling the Study of Software Development Behavior With Cross-Tool Logs. IEEE
Software 37, 6 (2020), 44ś51. https://doi.org/10.1109/MS.2020.3014573

[28] Yared H. Kidane and Peter A. Gloor. 2007. Correlating temporal communication
patterns of the Eclipse open source community with performance and creativity.
Computational and mathematical organization theory 13, 1 (2007), 17ś27. https:
//doi.org/10.1007/s10588-006-9006-3

[29] Amy J. Ko. 2019. Individual, Team, Organization, and Market: Four Lenses of
Productivity. In Rethinking Productivity in Software Engineering. Springer, 49ś55.
https://doi.org/10.1007/978-1-4842-4221-6_6

[30] Amy J. Ko and Brad A. Myers. 2008. Debugging Reinvented: Asking and An-
swering Why and Why Not Questions about Program Behavior. In Proceed-
ings of the 30th International Conference on Software Engineering (ICSE ’08).
Association for Computing Machinery, New York, NY, USA, 301ś310. https:
//doi.org/10.1145/1368088.1368130

[31] Max Lillack, Stefan Stanciulescu, Wilhelm Hedman, Thorsten Berger, and An-
drzej Wąsowski. 2019. Intention-Based Integration of Software Variants. In 2019
IEEE/ACM 41st International Conference on Software Engineering (ICSE). 831ś842.
https://doi.org/10.1109/ICSE.2019.00090

[32] William Martin, Federica Sarro, and Mark Harman. 2016. Causal impact analysis
for app releases in Google Play. In Proceedings of the 2016 24th ACM SIGSOFT
International Symposium on Foundations of Software Engineering. 435ś446. https:
//doi.org/10.1145/2950290.2950320

[33] Katrina D. Maxwell, Luk Van Wassenhove, and Soumitra Dutta. 1996. Software
development productivity of European space, military, and industrial applications.
IEEE Transactions on Software Engineering 22, 10 (1996), 706ś718. https://doi.
org/10.1109/32.544349

[34] André N Meyer, Thomas Fritz, Gail C Murphy, and Thomas Zimmermann. 2014.
Software developers’ perceptions of productivity. In Proceedings of the 22nd ACM
SIGSOFT International Symposium on Foundations of Software Engineering. 19ś29.
https://doi.org/10.1145/2635868.2635892

[35] Emerson Murphy-Hill and Andrew P. Black. 2008. Breaking the Barriers to
Successful Refactoring: Observations and Tools for Extract Method. In Proceedings
of the 30th International Conference on Software Engineering (ICSE ’08). Association
for Computing Machinery, New York, NY, USA, 421ś430. https://doi.org/10.
1145/1368088.1368146

[36] Emerson Murphy-Hill, Ciera Jaspan, Caitlin Sadowski, David Shepherd, Michael
Phillips, Collin Winter, Andrea Knight, Edward Smith, and Matthew Jorde. 2021.
What Predicts Software Developers’ Productivity? IEEE Transactions on Software
Engineering 47, 3 (2021), 582ś594. https://doi.org/10.1109/TSE.2019.2900308

[37] Edson Oliveira, Eduardo Fernandes, Igor Steinmacher, Marco Cristo, Tayana
Conte, and Alessandro Garcia. 2020. Code and commit metrics of developer
productivity: a study on team leaders perceptions. Empirical Software Engineering
25, 4 (2020), 2519ś2549. https://doi.org/10.1007/s10664-020-09820-z

[38] Mark C. Paulk, Bill Curtis, Mary Beth Chrissis, and Charles V. Weber. 1993.
Capability maturity model, version 1.1. IEEE Software 10, 4 (1993), 18ś27. https:
//doi.org/10.1109/52.219617

[39] Kai Petersen. 2011. Measuring and predicting software productivity: A systematic
map and review. Information and Software Technology 53, 4 (2011), 317ś343.
https://doi.org/10.1016/j.infsof.2010.12.001 Special section: Software Engineering
track of the 24th Annual Symposium on Applied Computing.

[40] Huilian Sophie Qiu, Alexander Nolte, Anita Brown, Alexander Serebrenik, and
Bogdan Vasilescu. 2019. Going Farther Together: The Impact of Social Capital
on Sustained Participation in Open Source. In 2019 IEEE/ACM 41st International
Conference on Software Engineering (ICSE). 688ś699. https://doi.org/10.1109/
ICSE.2019.00078

[41] Narayan Ramasubbu, Marcelo Cataldo, Rajesh Krishna Balan, and James D. Herb-
sleb. 2011. Configuring global software teams: a multi-company analysis of
project productivity, quality, and profits. In 2011 33rd International Conference on
Software Engineering (ICSE). 261ś270. https://doi.org/10.1145/1985793.1985830

[42] Simone Romano, Davide Fucci, Maria Teresa Baldassarre, Danilo Caivano, and
Giuseppe Scanniello. 2019. An empirical assessment on affective reactions
of novice developers when applying test-driven development. In International
Conference on Product-Focused Software Process Improvement. Springer, 3ś19.
https://doi.org/10.1007/978-3-030-35333-9_1

[43] Caitlin Sadowski, Emma Söderberg, Luke Church, Michal Sipko, and Alberto
Bacchelli. 2018. Modern code review: a case study at google. In Proceedings of
the 40th International Conference on Software Engineering: Software Engineering
in Practice. 181ś190. https://doi.org/10.1145/3183519.3183525

[44] Iflaah Salman, Ayse Tosun Misirli, and Natalia Juristo. 2015. Are students
representatives of professionals in software engineering experiments?. In In-
ternational Conference on Software Engineering, Vol. 1. IEEE, 666ś676. https:
//doi.org/10.1109/ICSE.2015.82

[45] Andrea Schankin, Annika Berger, Daniel V. Holt, Johannes C. Hofmeister, Till
Riedel, and Michael Beigl. 2018. Descriptive Compound Identifier Names Improve
Source Code Comprehension. In Proceedings of the 26th Conference on Program

1312

https://doi.org/10.1016/j.jss.2020.110586
https://doi.org/10.1016/j.jss.2019.06.004
https://doi.org/10.1109/ICSE43902.2021.00054
https://doi.org/10.1109/ICSE43902.2021.00054
https://doi.org/10.1214/14-AOAS788
https://doi.org/10.1177/1094428110392383
https://doi.org/10.1017/S1745855207005029
https://doi.org/10.1016/S0263-7863(96)00038-5
https://doi.org/10.1016/S0263-7863(96)00038-5
https://doi.org/10.1109/ICSE.1998.671610
https://doi.org/10.1109/ICSE.1998.671610
https://doi.org/10.1007/s10664-017-9523-3
https://doi.org/10.1007/s10664-017-9523-3
https://doi.org/10.1111/ajpy.12285
https://doi.org/10.1145/3487567
https://doi.org/10.1145/3454122.3454124
https://doi.org/10.1145/3454122.3454124
https://doi.org/10.1109/32.106988
https://opensourcesurvey.org/2017/
https://doi.org/10.1111/j.1365-2648.2007.04370.x
https://doi.org/10.1111/j.1365-2648.2007.04370.x
https://doi.org/10.2307/1912791
https://doi.org/10.1108/EBR-11-2018-0203
https://doi.org/10.1108/EMJB-11-2013-0054
https://doi.org/10.1108/EMJB-11-2013-0054
https://doi.org/10.1007/s11749-007-0046-x
https://doi.org/10.1016/j.respol.2017.05.005
https://doi.org/10.1016/j.respol.2017.05.005
https://doi.org/10.1109/MS.2020.3014573
https://doi.org/10.1007/s10588-006-9006-3
https://doi.org/10.1007/s10588-006-9006-3
https://doi.org/10.1007/978-1-4842-4221-6_6
https://doi.org/10.1145/1368088.1368130
https://doi.org/10.1145/1368088.1368130
https://doi.org/10.1109/ICSE.2019.00090
https://doi.org/10.1145/2950290.2950320
https://doi.org/10.1145/2950290.2950320
https://doi.org/10.1109/32.544349
https://doi.org/10.1109/32.544349
https://doi.org/10.1145/2635868.2635892
https://doi.org/10.1145/1368088.1368146
https://doi.org/10.1145/1368088.1368146
https://doi.org/10.1109/TSE.2019.2900308
https://doi.org/10.1007/s10664-020-09820-z
https://doi.org/10.1109/52.219617
https://doi.org/10.1109/52.219617
https://doi.org/10.1016/j.infsof.2010.12.001
https://doi.org/10.1109/ICSE.2019.00078
https://doi.org/10.1109/ICSE.2019.00078
https://doi.org/10.1145/1985793.1985830
https://doi.org/10.1007/978-3-030-35333-9_1
https://doi.org/10.1145/3183519.3183525
https://doi.org/10.1109/ICSE.2015.82
https://doi.org/10.1109/ICSE.2015.82


ESEC/FSE ’22, November 14ś18, 2022, Singapore, Singapore L. Cheng, E. Murphy-Hill, M. Canning, C. Jaspan, C. Green, A. Knight, N. Zhang, E. Kammer

Comprehension (ICPC ’18). Association for Computing Machinery, New York, NY,
USA, 31ś40. https://doi.org/10.1145/3196321.3196332

[46] Dag I.K. Sjoberg, Bente Anda, Erik Arisholm, Tore Dyba, Magne Jorgensen, Amela
Karahasanovic, Espen Frimann Koren, and Marek Vokác. 2002. Conducting realis-
tic experiments in software engineering. In Proceedings International Symposium
on Empirical Software Engineering. 17ś26. https://doi.org/10.1109/ISESE.2002.
1166921

[47] Margaret-Anne Storey, Thomas Zimmermann, Christian Bird, Jacek Czerwonka,
Brendan Murphy, and Eirini Kalliamvakou. 2021. Towards a Theory of Software
Developer Job Satisfaction and Perceived Productivity. IEEE Transactions on
Software Engineering 47, 10 (2021), 2125ś2142. https://doi.org/10.1109/TSE.2019.
2944354

[48] The Standish Group. 1995. The CHAOS report.

[49] Ayse Tosun, Oscar Dieste, Davide Fucci, Sira Vegas, Burak Turhan, Hakan Er-
dogmus, Adrian Santos, Markku Oivo, Kimmo Toro, Janne Jarvinen, and Natalia
Juristo. 2017. An industry experiment on the effects of test-driven development
on external quality and productivity. Empirical Software Engineering 22, 6 (2017),
2763ś2805. https://doi.org/10.1007/s10664-016-9490-0

[50] StefanWagner and Florian Deissenboeck. 2019. Defining Productivity in Software
Engineering. In Rethinking Productivity in Software Engineering, Caitlin Sadowski
and Thomas Zimmermann (Eds.). Apress, Berkeley, CA, 29ś38. https://doi.org/
10.1007/978-1-4842-4221-6_4

[51] Zhendong Wang, Yi Wang, and David Redmiles. 2018. Competence-confidence
gap: A threat to female developers’ contribution on Github. In 2018 IEEE/ACM
40th International Conference on Software Engineering: Software Engineering in
Society (ICSE-SEIS. IEEE, 81ś90. https://doi.org/10.1145/3183428.3183437

1313

https://doi.org/10.1145/3196321.3196332
https://doi.org/10.1109/ISESE.2002.1166921
https://doi.org/10.1109/ISESE.2002.1166921
https://doi.org/10.1109/TSE.2019.2944354
https://doi.org/10.1109/TSE.2019.2944354
https://doi.org/10.1007/s10664-016-9490-0
https://doi.org/10.1007/978-1-4842-4221-6_4
https://doi.org/10.1007/978-1-4842-4221-6_4
https://doi.org/10.1145/3183428.3183437

	Abstract
	1 Introduction
	2 Motivation
	3 Related Work
	4 Panel Analysis: Methods
	4.1 Data Sources
	4.2 Dependent Variable: Productivity
	4.3 Independent Variables
	4.4 From Variables to Panel Data
	4.5 Modeling
	4.6 Multicollinearity
	4.7 Threats to Validity

	5 Panel Analysis: Results
	5.1 Factors Causally Linked to Productivity
	5.2 Quadrant Chart

	6 Lagged Panel Analysis: Methods
	7 Lagged Panel Analysis: Results
	8 Discussion
	9 Conclusion
	References

