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Abstract 

Calendar year 2017 marks the 30th anniversary of the International Function Point Users Group 

(IFPUG).  This paper highlights some of the many modern uses of function point metrics.   The 

software industry is one of the largest, wealthiest, and most important industries in the modern 

world.  The software industry is also troubled by very poor quality and very high cost structures 

due to the expense of software development, maintenance, and endemic problems with poor 

quality control. 

Accurate measurements of software development and maintenance costs and accurate 

measurement of quality would be extremely valuable.  Function point metrics allow accurate 

measures. 

Note:  Many tables in this report are excerpts from the author’s new 2017 series of three books 

with CRC Press:  1) A Guide to Selecting Software Measures and Metrics; 2) A Quantified 

Comparison of 60 Software Development Methodologies;  3) Measuring and Comparing Global 

Software Productivity and Quality. 
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Introduction 

In the mid 1970’s the author was commissioned by IBM executives to build IBM’s first software 

estimation tool.  In developing this tool we noted that “lines of code” was inaccurate for high-

level languages. But I had no good solution at the time.  What I did was convert LOC results into 

“equivalent assembly” lines of code and measured productivity using “equivalent assembly LOC 

per month.”  This worked mathematically but was an ugly and inelegant solution to the LOC 

problem. 

Later in 1978 Al Albrecht and I both spoke at an IBM conference in Monterey, California.  My 

talk was on the problems of lines of code metrics.  Al’s talk happened to be the first public 

speech on function points. 

Al’s team at IBM White Plans and the new function point metrics solved the LOC problem.  Al 

and I became friends and later worked together.  Soon after IFPUG was formed in Canada, and 

function point metrics began to advance on their path of becoming the #1 software metric. 

IBM’s Development of Function Point Metrics 

The author was working at IBM in the 1960’s and 1970’s and was able to observe the origins of 

several IBM technologies such as inspections, parametric estimation tools, and function point 

metrics.  This short paper discusses the origins and evolution of function point metrics. 

In the 1960’s and 1970’s IBM was developing new programming languages such as APL, PL/I, 

PL/S etc.   IBM executives wanted to attract customers to these new languages by showing 

clients higher productivity rates. 

As it happens the compilers for various languages were identical in scope and had the same 

features.  Some older compilers were coded in assembly language while newer compilers were 

coded in PL/S, which was a new IBM language for systems software. 

When we measured the productivity of assembly-language compilers versus PL/S compilers 

using “lines of code” (LOC) we found that even though PL/S took less effort, the LOC metric of 

LOC per month favored assembly language. 

This problem is easiest to see when comparing products that are almost identical but merely 

coded in different languages.  Compilers, of course, are very similar.  Other products besides 

compilers that are close enough in feature sets to have their productivity negatively impacted by 

LOC metrics are PBX switches, ATM banking controls, insurance claims handling, and sorts.    

To show the value of higher-level languages the first IBM approach was to convert high-level 

languages into “equivalent assembly language.”  In other words we measured productivity 

against a synthetic size based on assembly language instead of against true LOC size in the 

actual higher level languages.  This method was used by IBM from around 1968 through 1972. 
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An IBM vice president, Ted Climis, said that IBM was investing a lot of money into new and 

better programming languages.  Neither he nor clients could understand why we had to use the 

old assembly language as the metric to show productivity gains for new languages.  This was 

counter-productive to the IBM strategy of moving customers to better programming languages.   

He wanted a better metric that was language independent and could be used to show the value of 

all IBM high-level languages. 

This led to the IBM investment in function point metrics and to the creation of a function-point 

development team under Al Albrecht at IBM White Plains.   

Function Point metrics were developed by the IBM team by around 1975 and used internally and 

successfully.  In 1978 IBM placed function point metrics in the public domain and announced 

them via a technical paper given by Al Albrecht at a joint IBM/SHARE/Guide conference in 

Monterey, California.   

Table 1 shows the underlying reason for the IBM function point invention based on the early 

comparison of assembly language and PL/S for IBM compilers.   

Table 1 shows productivity in four separate flavors: 

1. Actual lines of code in the true languages. 

2. Productivity based on “equivalent assembly code.” 

3. Productivity based on “function points per month.” 

4. Productivity based on “work hours per function point.” 

Note:  table 1 uses simple round numbers to clarify the issues noted with LOC metrics. 

Table 1:  IBM Function Point Evolution Circa 1968-1975 

 

(Results for two IBM compilers) 
 

     

  
Assembly PL/S 

  
Language Language 

     Lines of code (LOC)   17,500.00  
 

   5,000.00  

     Months of effort         30.00          12.50  

     Hours of effort    3,960.00  
 

   1,650.00  

     LOC per month       583.33  

 

      400.00  

     Equivalent assembly   17,500.00  
 

 17,500.00  

     Equiv. Assembly/month       583.33  
 

   1,400.00  

     



4 

 

Function points       100.00  
 

      100.00  

     Function Points/month           3.33  

 

          8.00  

     Work hours per FP           39.60  

 

          16.50  

 

The three rows highlighted in blue show the crux of the issue.  LOC metrics tend to penalize 

high-level languages and make low-level languages such as assembly look better than they really 

are.  Function points metrics, on the other hand, show tangible benefits from higher-level 

programming languages and this matches the actual expenditure of effort and standard economic 

analysis.  Productivity of course is defined as “goods or services produced per unit of labor or 

expense.”   

The creation and evolution of function point metrics was based on a need to show IBM clients 

the value of IBM’s emerging family of high-level programming languages such as PL/I, APL, 

and others.   

This is still a valuable use of function points since there are more than 3,000 programming 

languages in 2016 and new languages are being created at a rate of more than one per month.   

Another advantage of function point metrics vis a vis LOC metrics is that function points can 

measure the productivity of non-coding tasks such as creation of requirements and design 

documents.  In fact function points can measure all software activities, while LOC can only 

measure coding. 

Up until the explosion of higher-level programming languages occurred, assembly language was 

the only language used for systems software (the author programmed in assembly for several 

years when starting out as a young programmer).   

With only one programming language LOC metrics worked reasonably well.  It was only when 

higher-level programming languages appeared that the LOC problems became apparent.  It was 

soon realized that the essential problem with the LOC metric is really nothing more than a basic 

issue of manufacturing economics that had been understood by other industries for over 200 

years.   

This is a fundamental law of manufacturing economics:   “When a manufacturing process has a 

high percentage of fixed costs and there is a decline in the number of units produced, the cost 

per unit will go up.” 

The software non-coding work of requirements, design, and documentation act like fixed costs.  

When there is a move from a low-level language such as assembly to a higher-level language 

such as PL/S, the cost per unit will go up, assuming that LOC is the “unit” selected for 
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measuring the product.  This is because of the fixed costs of the non-code work and the reduction 

of code “units” for higher-level programming languages. 

Function point metrics are not based on code at all, but are an abstract metric that defines the 

essence of the features that the software provides to users.  This means that applications with the 

same feature sets will be the same size in terms of function points no matter what languages they 

are coded in.  Productivity and quality can go up and down, of course, but they change in 

response to team skills. 

Once function points were released by IBM in 1978 other companies began to use them, and 

soon the International Function Point User’s Group (IFPUG) was formed in Canada. 

Today in 2017 there are hundreds of thousands of function point users and hundreds of 

thousands of benchmarks based on function points.  In 1987 the International Function Point 

User’s Group (IFPUG) was first formed in Canada.  Today IFPUG has become the largest 

software measurement organization in the world. 

Today there are also several other varieties of function points such as COSMIC, FISMA, 

NESMA, etc.  IFPUG is the major form of function point metrics in the United States; the other 

forms are used elsewhere.   

Overall function points have proven to be a successful metric and are now widely used for 

productivity studies, quality studies, and economic analysis of software trends.  Function point 

metrics are supported by parametric estimation tools and also by benchmark studies.  There are 

also several flavors of automatic function point tools.  There are also function point associations 

in most industrialized countries.   There are also ISO standards for functional size measurement. 

(There was never an ISO standard for code counting and counting methods vary widely from 

company to company and project to project.  In a benchmark study performed for a “LOC” shop 

we found four sets of counting rules for LOC that varied by over 500%.) 

Table 2 shows countries with increasing function point usage circa 2017, and it also shows the 

countries where function point metrics are now required for government software projects. 

 
Table 2:  Countries Expanding Use of Function Points 2017 

   1 Argentina 

2 Australia 

3 Belgium 

4 Brazil Required for government contracts 2008 

5 Canada 

6 China 

7 Finland 

8 France 
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9 Germany 

10 India 

11 Italy Required for government contracts 2012 

12 Japan Required for government contracts 2014 

13 Malaysia Required for government contracts 2015 

14 Mexico 

15 Norway 

16 Peru 

17 Poland 

18 Singapore 

19 South Korea Required for government contracts 2014 

20 Spain 

21 Switzerland 

22 Taiwan 

23 The Netherlands 

24 United Kingdom 

25 United States 

 

Several other countries will probably also mandate function points for government software 

contracts by 2017.  Poland may be next since their government is discussing function points for 

contracts.   Eventually most countries will do this. 

In retrospect function point metrics have proven to be a powerful tool for software economic and 

quality analysis.   

The software industry has become one of the largest and most successful industries in history.  

However software applications are among the most expensive and error-prone manufactured 

objects in history.   

Software Historical Measurement Problems 

Software needs a careful analysis of economic factors and much better quality control than is 

normally accomplished.  In order to achieve these goals, software also needs accurate and 

reliable metrics and good measurement practices.  Unfortunately the software industry lacks both 

circa 2017. 

This paper deals with some of the most glaring problems of software metrics and suggests a 

metrics and measurement suite that can actually explore software economics and software 

quality with precision.  The suggested metrics can be predicted prior to development and then 

measured after release. 

Following are descriptions of the more common software metric topics in alphabetical order: 
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Backfiring is a term that refers to mathematical conversion between lines of code and function 

points.  This method was first developed by A.J. Albrecht and colleagues during the original 

creation of function point metrics, since the IBM team had LOC data for the projects they used 

for function points.  IBM used logical code statements for backfiring rather than physical LOC.  

There are no ISO standards for backfiring.  Backfiring is highly ambiguous and varies by over 

500% from language to language and company to company.  A sample of “backfiring” is the 

ratio of about 106.7 statements in the procedure and data divisions of COBOL for one IFPUG 

function point.  Consulting companies sell tables of backfire ratios for over 1000 languages, but 

the tables are not the same from vendor to vendor.  Backfiring is not endorsed by any of the 

function point associations.  Yet probably as many as 100,000 software projects have used 

backfiring because it is quick and inexpensive, even though very inaccurate with huge variances 

from language to language and programmer to programmer. 

Benchmarks in a software context often refer to the effort and costs for developing an 

application.  Benchmarks are expressed in a variety of metrics such as “work hours per function 

point,” “function points per month,” “lines of code per month,” “work hours per KLOC,” “story 

points per month,” and many more.  Benchmarks also vary in scope and range from project 

values, phase values, activity values, and task values.  There are no ISO standards for benchmark 

contents.  Worse, many benchmarks “leak” and omit over 50% of true software effort.  The 

popular benchmark of “design, code, and unit test” termed DCUT contains only about 30% of 

total software effort.  The most common omissions from benchmarks include unpaid overtime, 

management, and the work of part-time specialists such as technical writers and software quality 

assurance.  Thus benchmarks from various sources such as ISBSG, QSM, and others cannot be 

directly compared since they do not contain the same information.  The best and most reliable 

benchmarks feature activity-based costs and include the full set of development tasks; i.e. 

requirements, architecture, business analysis, design, coding, testing, quality assurance, 

documentation, project management, etc.  

Cost estimating for software projects is generally inaccurate and usually optimistic.  About 85% 

of projects circa 2017 use inaccurate manual estimates.  The other 15% use the more accurate 

parametric estimating tools of which these are the most common estimating tools in 2015, shown 

in alphabetical order:  COCOMO, COCOMO clones, CostXpert, ExcelerPlan, KnowledgePlan, 

SEER, SLIM, Software Risk Master (SRM), and TruePrice.  A study by the author that 

compared 50 manual estimates against 50 parametric estimates found that only 4 of the 50 

manual estimates were within plus or minus 5% and the average was 34% optimistic for costs 

and 27% optimistic for schedules.  For manual estimates, the larger the projects the more 

optimistic the results.  By contrast 32 of the 50 parametric estimates were within plus or minus 

5% and the deviations for the others averaged about 12% higher for costs and 6% longer for 

schedules.  Conservatism is the “fail safe” mode for estimates.  The author’s SRM tool has a 

patent-pending early sizing feature based on pattern matching that allows it to be used 30 to 180 

days earlier than the other parametric estimation tools.  It also predicts topics not included in the 
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others such as litigation risks, costs of breach of contract litigation for the plaintiff and 

defendant, and document sizes and costs for 20 key document types such as requirements, 

design, user manuals, plans, and others.  The patent-pending early sizing feature of SRM 

produces size in a total of 23 metrics including function points, story points, use case points, 

logical code statements, physical lines of code, and many others. 

Cost per defect metrics penalize quality and makes the buggiest software look cheapest.  There 

are no ISO or other standards for calculating cost per defect.  Cost per defect does not measure 

the economic value of software quality.  The urban legend that it costs 100 times as much to fix 

post-release defects as early defects is not true and is based on ignoring fixed costs.  Due to fixed 

costs of writing and running test cases, cost per defect rises steadily because fewer and fewer 

defects are found.  This is caused by a standard rule of manufacturing economics:  “if a process 

has a high percentage of fixed costs and there is a reduction in the units produced, the cost per 

unit will go up.”  This explains why cost per defects seems to go up over time even though actual 

defect repair costs are flat and do not change very much.  There are of course very troubling 

defects that are expensive and time consuming, but these are comparatively rare.  Appendix A 

explains the problems of cost per defect metrics. 

Defect removal efficiency (DRE) was developed by IBM circa 1970.  The original IBM version 

of DRE measured internal defects found by developers and compared them to external defects 

found by clients in the first 90 days following release.  If developers found 90 bugs and clients 

reported 10 bugs, DRE is 90%.  This measure has been in continuous use by hundreds of 

companies since about 1975.  However there are no ISO standards for DRE.  The International 

Software Benchmark Standards Group (ISBSG) unilaterally changed the post-release interval to 

30 days in spite of the fact that the literature on DRE since the 1970’s was based on a 90 day 

time span, such as the author’s 1991 version of Applied Software Measurement and his more 

recent book on The Economics of Software Quality with Olivier Bonsignour.  Those with 

experience in defects and quality tracking can state with certainty that a 30 day time window is 

too short; major applications sometimes need more than 30 days of preliminary installation and 

training before they are actually used.  Of course bugs will be found long after 90 days; but 

experience indicates that a 90-day interval is sufficient to judge the quality of software 

applications.  A 30 day interval is not sufficient. 

Earned value management (EVM) is a method of combining schedule, progress, and scope.  It 

originated in the 1960’s for government contracts and has since been applied to software with 

reasonable success.  Although earned value is relatively successful, it really needs some 

extensions to be a good fit for software projects.  The most urgent extension would be to link 

progress to quality and defect removal.  Finding and fixing bugs is the most expensive software 

activity.  It would be easy to include defect predictions and defect removal progress into the 

earned value concept.  Another extension for software would be to include the specific 

documents that are needed for large software applications.  If the earned-value approach included 

quality topics, it would be very useful for contracts and software outsource agreements.  EVM is 
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in use for defense software contracts, but the omission of quality is a serious problem since 

finding and fixing bugs is the most expensive single cost driver for software.  The U.S. 

government requires earned value for many contracts.  The governments of Brazil and South 

Korea require function points for software contracts.  Most projects that end up in court for 

breach of contract do so because of poor quality.  It is obvious that combining earned-value 

metrics, defect and quality metrics, and function point metrics would be a natural fit to all 

software contracts and would probably lead to fewer failures and better overall performance. 

Defect density metrics measure the number of bugs released to clients.  There are no ISO or 

other standards for calculating defect density.  One method counts only code defects released.  A 

more complete method used by the author includes bugs originating in requirements, 

architecture, design, and documents as well as code defects.  The author’s method also includes 

“bad fixes” or bugs in defect repairs themselves.  There is more than a 500% variation between 

counting only released code bugs and counting bugs from all sources.  For example requirements 

defects comprise about 20% of released software problem reports. 

Function point metrics were invented by IBM circa 1975 and placed in the public domain circa 

1978.  Function point metrics do measure economic productivity using both “work hours per 

function point” and “function points per month”.  They also are useful for normalizing quality 

data such as “defects per function point”.  However there are numerous function point variations 

and they all produce different results:  Automatic, backfired, COSMIC, Fast, FISMA, IFPUG, 

Mark II, NESMA, Unadjusted, etc.  There are ISO standards for COSMIC, FISMA, IFPUG, and 

NESMA.  However in spite of ISO standards all four produce different counts.  Adherents of 

each function point variant claim “accuracy” as a virtue but there is no cesium atom or 

independent way to ascertain accuracy so these claims are false.  For example COSMIC function 

points produce higher counts than IFPUG function points for many applications but that does not 

indicate “accuracy” since there is no objective way to know accuracy. 

Goal/Question metrics (GQM) were invented by Dr. Victor Basili of the University of 

Maryland.  The concept is appealing.  The idea is to specify some kind of tangible goal or target, 

and then think of questions that must be answered to achieve the goal.  This is a good concept for 

all science and engineering and not just software.  However, since every company and project 

tends to specify unique goals the GQM method does not lend itself to either parametric 

estimation tools or to benchmark data collection.  It would not be difficult to meld GQM with 

function point metrics and other effective software metrics such as defect removal efficiency 

(DRE).  For example several useful goals might be “How can we achieve defect potentials of less 

than 1.0 per function point?”  or “How can we achieve productivity rates of 100 function points 

per month?”  Another good goal which should actually be a target for every company and every 

software project in the world would be “How can we achieve more than 99% in defect removal 

efficiency (DRE)?” 
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ISO/IEC standards are numerous and cover every industry; not just software.  However these 

standards are issued without any proof of efficacy.  After release some standards have proven to 

be useful, some are not so useful, and a few are being criticized so severely that some software 

consultants and managers are urging a recall such as the proposed ISO/IEC testing standard. ISO 

stands for the International Organization for Standards (in French) and IEC stands for 

International Electrical Commission.  While ISO/IEC standards are the best known, there are 

other standards groups such as the Object Management Group (OMG) which recently published 

a standard on automatic function points.  Here too there is no proof of efficacy prior to release.  

There are also national standards such as ANSI or the American National Standards Institute, 

and also military standards by the U.S. Department of Defense (DoD) and by similar 

organizations elsewhere.  The entire topic of standards is in urgent need of due diligence and of 

empirical data that demonstrates the value of specific standards after issuance.  In total there are 

probably several hundred standards groups in the world with a combined issuance of over 1000 

standards, of which probably 50 apply to aspects of software.  Of these only a few have solid 

empirical data that demonstrates value and efficacy. 

Lines of code (LOC) metrics penalize high-level languages and make low-level languages look 

better than they are.  LOC metrics also make requirements and design invisible. There are no 

ISO or other standards for counting LOC metrics.  About half of the papers and journal articles 

use physical LOC and half use logical LOC. The difference between counts of physical and 

logical LOC can top 500%.  The overall variability of LOC metrics has reached an astounding 

2,200% as measured by Joe Schofield, the former president of IFPUG! LOC metrics make 

requirements and design invisible and also ignore requirements and design defects, which 

outnumber code defects.  Although there are benchmarks based on LOC, the intrinsic errors of 

LOC metrics make them unreliable.  Due to lack of standards for counting LOC, benchmarks 

from different vendors for the same applications can contain widely different results.  Appendix 

B provides a mathematical proof that LOC metrics do not measure economic productivity by 

showing 79 programming languages with function points and LOC in a side-by-side format. 

SNAP point metrics are a new variation on function points introduced by IFPUG in 2012.  The 

term SNAP is an acronym for “software non-functional assessment process.”   The basic idea is 

that software requirements have two flavors: 1) functional requirements needed by users; 2) non-

functional requirements due to laws, mandates, or physical factors such as storage limits or 

performance criteria.  The SNAP committee view is that these non-functional requirements 

should be sized, estimated, and measured separately from function point metrics.  Thus SNAP 

and function point metrics are not additive, although they could have been.  Having two separate 

metrics for economic studies is awkward at best and inconsistent with other industries. For that 

matter it seems inconsistent with standard economic analysis in every industry. Almost every 

industry has a single normalizing metric such as “cost per square foot” for home construction or 

“cost per gallon” for gasoline and diesel oil.  As of 2017 none of the parametric estimation tools 

have fully integrated SNAP and it may be that they won’t since the  costs of adding SNAP are 
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painfully expensive.  As a rule of thumb non-functional requirements are about equal to 15% of 

functional requirements, although the range is very wide.  The author’s parametric tool calculates 

SNAP points but adds the effort for non-functional requirements to the total effort for the entire 

project, so net productivity is expressed in terms of cost per function point. 

Story point metrics are widely used for agile projects with “user stories.”  Story points have no 

ISO standard for counting or any other standard.  They are highly ambiguous and vary by as 

much as 400% from company to company and project to project.  There are few useful 

benchmarks using story points.  Obviously story points can’t be used for projects that don’t 

utilize user stories so they are worthless for comparisons against other design methods. 

Technical debt is a new metric and rapidly spreading.  It is a brilliant metaphor developed by 

Ward Cunningham.   The concept of “technical debt” is that topics deferred during development 

in the interest of schedule speed will cost more after release than they would have cost initially.  

However there are no ISO standards for technical debt and the concept is highly ambiguous.  It 

can vary by over 500% from company to company and project to project.  Worse, technical debt 

does not include all of the costs associated with poor quality and development short cuts.  

Technical debt omits canceled projects, consequential damages or harm to users, and the costs of 

litigation for poor quality. 

Use case points are used by projects with designs based on “use cases” which often utilize 

IBM’s Rational Unified Process (RUP).  There are no ISO standards for use cases.  Use cases are 

ambiguous and vary by over 200% from company to company and project to project.  Obviously 

use cases are worthless for measuring projects that don’t utilize use cases, so they have very little 

benchmark data.  This is yet another attempt to imitate the virtues of function point metrics, only 

with somewhat less rigor and with imperfect counting rules as of 2015. 

Velocity is an agile metric that is used for prediction of sprint and project outcomes.  It uses 

historical data on completion of past work units combined with the assumption that future work 

units will be about the same.  Of course it is necessary to know future work units for the method 

to operate.  The concept of velocity is basically similar to the concept of using historical 

benchmarks for estimating future results.  However as of 2015 velocity has no ISO standards and 

no certification.  There are no standard work units and these can be story points or other metrics 

such as function points or use case points, or even synthetic concepts such as “days per task.”  If 

agile projects use function points then they could gain access to large volumes of historical data 

using activity-based costs; i.e. requirements effort, design effort, code effort, test effort, 

integration effort, documentation effort, etc.  Story points have too wide a range of variability 

from company to company and project to project; function points are much more consistent 

across various kinds of projects.  Of course COSMIC, IFPUG, and the other variants don’t have 

exactly the same results. 
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Defining Software Productivity 

For more than 200 years the standard economic definition of productivity has been, “Goods or 

services produced per unit of labor or expense.”  This definition is used in all industries, but has 

been hard to use in the software industry.  For software there is ambiguity in what constitutes our 

“goods or services.” 

The oldest unit for software “goods” was a “line of code” or LOC.  More recently software goods 

have been defined as “function points.”   Even more recent definitions of goods include “story 

points” and “use case points.”   The pros and cons of these units have been discussed and some 

will be illustrated in the appendices.   

Another important topic taken from manufacturing economics has a big impact on software 

productivity that is not yet well understood even in 2017: fixed costs. 

A basic law of manufacturing economics that is valid for all industries including software is the 

following:  “When a development process has a high percentage of fixed costs, and there is a 

decline in the number of units produced, the cost per unit will go up.” 

When a “line of code” is selected as the manufacturing unit and there is a switch from a low-

level language such as assembly to a high level language such as Java, there will be a reduction 

in the number of units developed.   

But the non-code tasks of requirements and design act like fixed costs.  Therefore the cost per 

line of code will go up for high-level languages.  This means that LOC is not a valid metric for 

measuring economic productivity as proven in Appendix B. 

For software there are two definitions of productivity that match standard economic concepts: 

1. Producing a specific quantity of deliverable units for the lowest number of work hours. 

2. Producing the largest number of deliverable units in a standard work period such as an 

hour, month, or year. 

In definition 1 deliverable goods are constant and work hours are variable. 

In definition 2 deliverable goods are variable and work periods are constant. 

The common metrics “work hours per function point” and “work hours per KLOC” are good 

examples of productivity definition 1.   

The metrics “function points per month” and “lines of code per month” are examples of 

definition 2.   
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However for “lines of code” the fixed costs of requirements and design will cause apparent 

productivity to be reversed, with low-level languages seeming better than high-level languages, 

as shown by the 79 languages listed in Appendix B. 

Definition 2 will also encounter the fact that the number of work hours per month varies widely 

from country to country.  For example India works 190 hours per month while the Netherlands 

work only 115 hours per month.   This means that productivity definitions 1 and 2 will not be the 

same.  A given number of work hours would take fewer calendar months in India than in the 

Netherlands due to the larger number of monthly work hours. 

Table 3 shows the differences between “work hours per function point” and “function points per 

month” for 52 countries.  The national work hour column is from the Organization of 

International Cooperation and Development (OECD).  Table 1 assumes a constant value of 15 

work hours per function point for an identical application in every country shown. 

Table 3:  Comparison of Work Hours per FP and FP per Month 

OECD Work Function 

National Hours per Points 

Work Function per 

hours Point Month 

per month 

1 India        190.00           15.00           13.47  

2 Taiwan        188.00           15.00           13.20  

3 Mexico        185.50           15.00           13.17  

4 China        186.00           15.00           12.93  

5 Peru        184.00           15.00           12.67  

6 Colombia        176.00           15.00           12.13  

7 Pakistan        176.00           15.00           12.13  

8 Hong Kong        190.00           15.00           12.01  

9 Thailand        168.00           15.00           11.73  

10 Malaysia        192.00           15.00           11.73  

11 Greece        169.50           15.00           11.70  

12 South Africa        168.00           15.00           11.60  

13 Israel        159.17           15.00           11.14  

14 Viet Nam        160.00           15.00           11.07  

15 Philippines        160.00           15.00           10.93  

16 Singapore        176.00           15.00           10.92  

17 Hungary        163.00           15.00           10.87  

18 Poland        160.75           15.00           10.85  

19 Turkey        156.42           15.00           10.69  

20 Brazil        176.00           15.00           10.65  
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21 Panama        176.00           15.00           10.65  

22 Chile        169.08           15.00           10.51  

23 Estonia        157.42           15.00           10.49  

24 Japan        145.42           15.00           10.49  

25 Switzerland        168.00           15.00           10.45  

26 Czech Republic        150.00           15.00           10.00  

27 Russia        164.42           15.00             9.97  

28 Argentina        168.00           15.00             9.91  

29 Korea - South        138.00           15.00             9.60  

30 United States       149.17           15.00            9.47  

31 Saudi Arabia        160.00           15.00             9.44  

32 Portugal        140.92           15.00             9.39  

33 United Kingdom        137.83           15.00             9.32  

34 Finland        139.33           15.00             9.29  

35 Ukraine        156.00           15.00             9.20  

36 Venezuela        152.00           15.00             9.10  

37 Austria        134.08           15.00             8.94  

38 Luxembourg        134.08           15.00             8.94  

39 Italy        146.00           15.00             8.75  

40 Belgium        131.17           15.00             8.74  

41 New Zealand        144.92           15.00             8.68  

42 Denmark        128.83           15.00             8.59  

43 Canada        142.50           15.00             8.54  

44 Australia        144.00           15.00             8.50  

45 Ireland        127.42           15.00             8.49  

46 Spain        140.50           15.00             8.42  

47 France        123.25           15.00             8.22  

48 Iceland        142.17           15.00             8.00  

49 Sweden        135.08           15.00             7.97  

50 Norway        118.33           15.00             7.89  

51 Germany        116.42           15.00             7.76  

52 Netherlands        115.08           15.00             7.67  

Average       155.38          15.00          10.13  

 

No one to date has produced a table similar to table 1 for SNAP metrics but it is obvious that 

work hours per SNAP point and SNAP points per month will follow the same global patterns as 

do the older function point metrics. 

Of course differences in experience, methodologies, languages, and other variables also impact 

both forms of productivity.  The point of table 1 is that the two forms are not identical from 

country to country due to variations in local work patterns. 
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Defining Software Quality 

As we all know the topic of “quality” is somewhat ambiguous in every industry.  Definitions for 

quality can encompass subjective aesthetic quality and also precise quantitative units such as 

numbers of defects and their severity levels. 

Over the years software has tried a number of alternate definitions for quality that are not 

actually useful.  For example one definition for software quality has been “conformance to 

requirements.”    

Requirements themselves are filled with bugs or errors that comprise about 20% of the overall 

defects found in software applications.  Defining quality as conformance to a major source of 

errors is circular reasoning and clearly invalid.  We need to include requirements errors in our 

definition of quality. 

Another definition for quality has been “fitness for use.”  But this definition is ambiguous and 

cannot be predicted before the software is released, or even measured well after release.  

It is obvious that a workable definition for software quality must be unambiguous and capable of 

being predicted before release and then measured after release and should also be quantified and 

not purely subjective. 

Another definition for software quality has been a string of words ending in “…ility” such as 

reliability and maintainability.  However laudable these attributes are, they are all ambiguous and 

difficult to measure.  Further, they are hard to predict before applications are built.   

The quality standard ISO/IEC 9126 includes a list of words such as portability, maintainability, 

reliability, and maintainability.  It is astonishing that there is no discussion of defects or bugs.  

Worse, the ISO/IEC definitions are almost impossible to predict before development and are not 

easy to measure after release nor are they quantified.  It is obvious that an effective quality 

measure needs to be predictable, measurable, and quantifiable.   

Reliability is predictable in terms of mean time to failure (MTTF) and mean time between 

failures (MTBF).  Indeed these are standard predictions from the author’s Software Risk Master 

(SRM) tool.  However reliability is inversely proportional to delivered defects.  Therefore the 

ISO quality standards should have included defect potentials, defect removal efficiency (DRE), 

and delivered defect densities. 

An effective definition for software quality that can be both predicted before applications are 

built and then measured after applications are delivered is:  “Software quality is the absence of 

defects which would either cause the application to stop working, or cause it to produce 

incorrect results.”   
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Because delivered defects impact reliability, maintainability, usability, fitness for use, 

conformance to requirements, and also customer satisfaction any effective definition of software 

quality must recognize the central importance of achieving low volumes of delivered defects.  

Software quality is impossible without low levels of delivered defects no matter what definition 

is used. 

This definition has the advantage of being applicable to all software deliverables including 

requirements, architecture, design, code, documents, and even test cases. 

If software quality focuses on the prevention or elimination of defects, there are some effective 

corollary metrics that are quite useful. 

The “defect potential” of a software application is defined as the sum total of bugs or defects that 

are likely to be found in requirements, architecture, design, source code, documents, and “bad 

fixes” or secondary bugs found in bug repairs themselves.   The “defect potential” metric 

originated in IBM circa 1973 and is fairly widely used among technology companies. 

The “defect detection efficiency” (DDE) is the percentage of bugs found prior to release of the 

software to customers. 

The “defect removal efficiency” (DRE) is the percentage of bugs found and repaired prior to 

release of the software to customers. 

DDE and DRE were developed in IBM circa 1973 but are widely used by technology companies 

in every country.  As of 2015 the average DRE for the United States is just over 90%.   

(DRE is normally measured by comparing internal bugs against customer reported bugs for the 

first 90 days of use.  If developers found 90 bugs and users reported 10 bugs, the total is 100 

bugs and DRE would be 90%.) 

Another corollary metric is that of “defect severity.”  This is a very old metric dating back to 

IBM in the early 1960’s.  IBM uses four severity levels:  

• Severity 1 Software is inoperable    <    1% 

• Severity 2 Major feature disabled or incorrect   <  15%  

• Severity 3 Minor error; software is usable   <  40% 

• Severity 4 Cosmetic error that does not affect results  <  35% 

To clarify these various terms, table 4 shows defect potentials, and DRE for an application of 

1000 function points coded in the Java language using Agile development.  (Table 2 uses even 

numbers to simplify the math.  The author’s Software Risk Master (SRM) tool predicts the same 

kinds of values for actual projects.). 
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Table 4: Software Quality for 1000 Function Points, 

Java, and Agile Development 

Defect Potentials Number Defects 

of Bugs Per FP 

Requirements defects              750  
           

0.75  

Architecture defects              150  
           

0.15  

Design defects           1,000  
           

1.00  
 
Code defects           1,350  1.35            

Document defects              250  
           

0.25  

Sub Total          3,500  

          

3.50  

Bad fixes 150 
           

0.15  

TOTAL          3,650  

          

3.65  

Defect removal Efficiency (DRE) 97.00% 97.00% 

Defects removed           3,540  
           

3.54  

Defects delivered             110  

          

0.11  

      

High-severity delivered                15  

          

0.02  

 

All of the values shown in Table 4 can be predicted before applications are developed and then 

measured after the applications are released.  Thus software quality can move from an 

ambiguous and subjective term to a rigorous and quantitative set of measures that can even be 

included in software contracts.  Note that bugs from requirements and design cannot be 

quantified using lines of code or KLOC, which is why function points are the best choice for 

quality measurements.  It is possible to retrofit LOC after the fact, but in real life LOC is not 

used for requirements, architecture, and design bug predictions. 

Note that table 4 combines non-functional and functional requirements defects, which might be 

separate categories if SNAP metrics are used.  However in almost 100% of software 

requirements documents studied by the author functional and non-functional requirements are 

both combined without any distinction in the requirements themselves. 
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Patterns of Successful Software Measurements and Metrics 

Since the majority of global software projects are either not measured at all, only partially 

measured, or measured with metrics that violate standard economic assumptions, what does 

work?  Following are discussions of the most successful combinations of software metrics 

available today in 2017. 

Successful Software Measurement and Metric Patterns 

1. Function points for normalizing productivity data 

2. Function points for normalizing quality data 

3. SNAP metrics for non-functional requirements 

4. Defect potentials based on all defect types 

5. Defect removal efficiency (DRE) based on all defect types 

6. Defect removal efficiency (DRE) including inspections and static analysis 

7. Defect removal efficiency (DRE) based on a 90-day post release period 

8. Activity-based benchmarks for development 

9. Activity-based benchmarks for maintenance 

10. Cost of quality (COQ) for quality economics 

11. Total cost of ownership (TCO) for software economics 

Let us consider these 11 patterns of successful metrics. 

Function points for normalizing productivity data 

It is obvious that software projects are built by a variety of occupations and use a variety of 

activities including 

1. Requirements 

2. Design 

3. Coding 

4. Testing 

5. Integration 

6. Documentation 

7. Management 

The older lines of code (LOC) metric is worthless for estimating or measuring non-code work.  

Function points can measure every activity individually and also the combined aggregate totals 

of all activities. 

Note that the new SNAP metric for non-functional requirements is not included.  Integrating 

SNAP into productivity and quality predictions and measurements is still a work in progress.  

Future versions of this paper will discuss SNAP. 
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Function Points for Normalizing Software Quality 

It is obvious that software bugs or defects originate in a variety of sources including but not 

limited to: 

1. Requirements defects 

2. Architecture defects 

3. Design defects 

4. Coding defects 

5. Document defects 

6. Bad fixes or defects in bug repairs 

The older lines of code metric is worthless for estimating or measuring non-code defects but 

function points can measure every defect source. 

Defect Potentials Based on all Defect Types 

The term “defect potential” originated in IBM circa 1965 and refers to the sum total of defects in 

software projects that originate in requirements, architecture, design, code, documents, and “bad 

fixes” or bugs in defect repairs.  The older LOC metric only measures code defects, and they are 

only a small fraction of total defects.  The current distribution of defects for an application of 

1000 function points in Java is approximately as follows: 

Defect Sources Defects per function point 

Requirements defects 0.75 

Architecture defects 0.15 

Design defects 1.00 

Code defects 1.25 

Document defects 0.20 

Bad fix defects 0.15 

Total Defect Potential 3.65 

 

There are of course wide variations based on team skills, methodologies, CMMI levels, 

programming languages, and other variable factors. 

Defect Removal Efficiency (DRE) Based on All Defect Types 

Since requirements, architecture, and design defects outnumber code defects, it is obvious that 

measures of defect removal efficiency (DRE) need to include all defect sources.  It is also 

obvious to those who measure quality that getting rid of code defects is easier than getting rid of 
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other sources.  Following are representative values for defect removal efficiency (DRE) by 

defect source for an application of 1000 function points in the C programming language: 

Defect DRE Delivered 

Defect Sources Potential Percent Defects 

Requirements defects 1.00 85.00% 0.15 

Architecture defects 0.25 75.00% 0.06 

Design defects 1.25 90.00% 0.13 

Code defects 1.50 97.00% 0.05 

Document defects 0.50 95.00% 0.03 

Bad fix defects 0.50 80.00% 0.10 

Totals 5.00 89.80% 0.51 

 

As can be seen DRE against code defects is higher than against other defect sources.  But the 

main point is that only function point metrics can measure and include all defect sources.  The 

older LOC metric is worthless for requirements, design, and architecture defects. 

Defect Removal Efficiency Including Inspections and Static Analysis 

Serious study of software quality obviously needs to include pre-test inspections and static 

analysis as well as coding. 

The software industry has concentrated only on code defects and only on testing.  This is short 

sighted and insufficient.  The software industry needs to understand all defect sources and every 

form of defect removal including pre-test inspections and static analysis.  The approximate 

defect removal efficiency levels (DRE) of various defect removal stages are shown below: 

Table 5:  Software Defect Potentials and  Defect Removal Efficiency (DRE) 

Note 1:  The table represents high quality defect removal operations. 

Note 2:  The table illustrates calculations from Software Risk Master ™ (SRM) 

Application type Embedded 

Application size in function points          1,000  

Application language Java 

Language level 6.00 

Source lines per FP 53.33 

Source lines of code        53,333  

KLOC of code 53.33 



21 

 

PRE-TEST DEFECT REMOVAL ACTIVITIES 

Pre-Test Defect Architect. Require. Design Code Document TOTALS 

Removal Methods Defects per 

Defects 

per Defects per 

Defects 

per 

Defects 

per 

Function Function Function Function Function 

Point Point Point Point Point 

Defect Potentials per FP 0.35 0.97 1.19 1.47 0.18 4.16 

Defect potentials 

               

355  

              

966  

              

1,189  

         

1,469              184  

        

4,163  

1 Requirement inspection 5.00% 87.00% 10.00% 5.00% 8.50% 25.61% 

Defects discovered 18 840 119 73 16 1,066 

Bad-fix injection 1 25 4 2 0 32 

Defects remaining 337 100 1,066 1,394 168 3,065 

2 Architecture inspection 85.00% 10.00% 10.00% 2.50% 12.00% 14.93% 

Defects discovered 286 10 107 35 20 458 

Bad-fix injection 9 0 3 1 1 14 

Defects remaining 42 90 956 1,358 147 2,593 

3 Design inspection 10.00% 14.00% 87.00% 7.00% 16.00% 37.30% 

Defects discovered 4 13 832 95 24 967 

Bad-fix injection 0 0 25 3 1 48 

Defects remaining 38 77 99 1,260 123 1,597 

4 Code inspection 12.50% 15.00% 20.00% 85.00% 10.00% 70.10% 

Defects discovered 5 12 20 1,071 12 1,119 

Bad-fix injection 0 0 1 32 0 34 

Defects remaining 33 65 79 157 110 444 

5 Static Analysis 2.00% 2.00% 7.00% 87.00% 3.00% 33.17% 

Defects discovered 1 1 6 136 3 147 

Bad-fix injection 0 0 0 4 0 4 

Defects remaining 32 64 73 16 107 292 

6 IV & V 10.00% 12.00% 23.00% 7.00% 18.00% 16.45% 

Defects discovered 3 8 17 1 19 48 

Bad-fix injection 0 0 1 0 1 1 

Defects remaining 29 56 56 15 87 243 

7 SQA review 10.00% 17.00% 17.00% 12.00% 12.50% 28.08% 
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Defects discovered 3 10 9 2 11 35 

Bad-fix injection 0 0 0 0 0 2 

Defects remaining 26 46 46 13 76 206 

Pre-test DRE 329 920 1,142 1,456 108 3,956 

Pre-test DRE % 92.73% 95.23% 96.12% 99.10% 58.79% 95.02% 

Defects Remaining 

                 

26  

                

46  

                   

46  

              

13                76  

           

207  

TEST DEFECT REMOVAL ACTIVITIES 

Test Defect Removal 

Stages 

Architect. Require. Design Code Document Total 

1 Unit testing 2.50% 4.00% 7.00% 35.00% 10.00% 8.69% 

Defects discovered 1 2 3 5 8 18 

Bad-fix injection 0 0 0 0 0 1 

Defects remaining 25 44 43 8 68 188 

2 Function testing 7.50% 5.00% 22.00% 37.50% 10.00% 12.50% 

Defects discovered 2 2 9 3 7 23 

Bad-fix injection 0 0 0 0 0 1 

Defects remaining 23 42 33 5 61 164 

3 Regression testing 2.00% 2.00% 5.00% 33.00% 7.50% 5.65% 

Defects discovered 0 1 2 2 5 9 

Bad-fix injection 0 0 0 0 0 0 

Defects remaining 23 41 31 3 56 154 

4 Integration testing 6.00% 20.00% 22.00% 33.00% 15.00% 16.90% 

Defects discovered 1 8 7 1 8 26 

Bad-fix injection 0 0 0 0 0 1 

Defects remaining 21 33 24 2 48 127 

5 Performance testing 14.00% 2.00% 20.00% 18.00% 2.50% 7.92% 

Defects discovered 3 1 5 0 1 10 

Bad-fix injection 0 0 0 0 0 0 

Defects remaining 18 32 19 2 46 117 

6 Security testing 12.00% 15.00% 23.00% 8.00% 2.50% 10.87% 

Defects discovered 2 5 4 0 1 13 

Bad-fix injection 0 0 0 0 0 0 
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Defects remaining 16 27 15 2 45 104 

7 Usability testing 12.00% 17.00% 15.00% 5.00% 48.00% 29.35% 

Defects discovered 2 5 2 0 22 30 

Bad-fix injection 0 0 0 0 1 1 

Defects remaining 14 22 12 2 23 72 

8 System testing 16.00% 12.00% 18.00% 12.00% 34.00% 20.85% 

Defects discovered 2 3 2 0 8 15 

Bad-fix injection 0 0 0 0 0 0 

Defects remaining 12 20 10 1 15 57 

9 Cloud testing 10.00% 5.00% 13.00% 10.00% 20.00% 11.55% 

Defects discovered 1 1 1 0 3 7 

Bad-fix injection 0 0 0 0 0 0 

Defects remaining 10 19 9 1 12 51 

10 Independent testing 12.00% 10.00% 11.00% 10.00% 23.00% 13.60% 

Defects discovered 1 2 1 0 3 7 

Bad-fix injection 0 0 0 0 0 0 

Defects remaining 9 17 8 1 9 44 

11 Field (Beta) testing 14.00% 12.00% 14.00% 12.00% 34.00% 17.30% 

Defects discovered 1 2 1 0 3 8 

Bad-fix injection 0 0 0 0 0 0 

Defects remaining 8 15 7 1 6 36 

12 Acceptance testing 13.00% 14.00% 15.00% 12.00% 24.00% 17.98% 

Defects discovered 1 2 1 0 2 6 

Bad-fix injection 0 0 0 0 0 0 

Defects remaining 7 13 6 1 3 30 

Test Defects Removed 19 33 40 12 72 177 

Testing Efficiency % 73.96% 72.26% 87.63% 93.44% 95.45% 85.69% 

Defects remaining 

                   

7  

                

13  

                     

6  

                

1                  3  

             

30  

Total Defects Removed 348 953 1,183 1,468 181 4,133 

Total Bad-fix injection 10 29 35 44 5 124 

Cumulative Removal % 98.11% 98.68% 99.52% 99.94% 98.13% 99.27% 

Remaining Defects 7 13 6 1 3 30 

High-severity Defects 1 2 1 0 0 5 
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Security Defects 0 0 0 0 0 1 

Remaining Defects 0.0067 0.0128 0.0057 0.0009 0.0035 0.0302 

per Function Point 

Remaining Defects 6.72 12.80 5.70 0.87 3.45 30.23 

per K Function Points 

Remaining Defects 0.13 0.24 0.11 0.02 0.06 0.57 

per KLOC 

 

Since the costs of finding and fixing bugs in software have been the largest single expense 

element for over 60 years, software quality and defect removal need the kind of data shown in 

table 3. 

Defect Removal Efficiency Based on 90 Days after Release 

It is obvious that measuring defect removal efficiency (DRE) based only on 30 days after release 

is insufficient to judge software quality: 

 

Defects found before release 900 

Defects found in 30 days 5 99.45% 

Defects found in 90 days 50 94.74% 

Defects found in 360 days 75 92.31% 
 

A 30 day interval after release will find very few defects since full usage may not even have begun due to 

installation and training.  IBM selected a 90 day interval because that allowed normal usage patterns to unfold.  Of 

course bugs continue to be found after 90 days, and also the software may be updated.  A 90-day window is a good 

compromise for measuring defect removal efficiency of the original version before updates begin to accumulate. 

A 30-day window may be sufficient for small projects < 250 function points.  But anyone who has worked on large 

systems in the 10,000 to 100,000 function point size range knows that installation and training normally take about a 

month.  Therefore full production may not even have started in the first 30 days. 

Activity Based Benchmarks for Development 

Today in 2017 software development is one of the most labor-intensive and expensive industrial activities in human 

history.  Building large software applications costs more than the cost of a 50 story office building or the cost of an 

80,000 ton cruise ship. 

Given the fact that large software applications can employ more than 500 personnel in a total of more than 50 

occupations, one might think that the industry would utilize fairly detailed activity-based benchmarks to explore the 

complexity of modern software development. 
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But unfortunately the majority of software benchmarks in 2016 are single values such as “work hours per function 

point,” “function points per month,” or “lines of code per month.”  This is not sufficient.  Following are the kinds of 

activity-based benchmarks actually needed by the industry in order to understand the full economic picture of 

modern software development.  Table 6 reflects a system of 10,000 function points and the Java programming 

language combined with an average team and iterative development: 

Table 6:  Example of Activity-based Benchmark 

 

 Language Java 

 Function points 10,000 

 Lines of code 533,333 

 KLOC 533 

 

 Development Activities Work FP per Work  LOC per 

Hours month Hours  Month 

per FP 

per 

KLOC 

 

  

   
1 Business analysis 0.02 7,500.00 0.33 

        
400,000  

2 Risk analysis/sizing 0.00 35,000.00 0.07 
     

1,866,666  

3 Risk solution planning 0.01 15,000.00 0.17 
        

800,000  

4 Requirements 0.38 350.00 7.08 
          

18,667  
 

5 Requirement. Inspection 0.22 600.00 4.13 32,000           
 

6 Prototyping 0.33 400.00 0.62 213,333         

7 Architecture 0.05 2,500.00 0.99 
        

133,333  

8 Architecture. Inspection 0.04 3,000.00 0.83 
        

160,000  

9 Project plans/estimates 0.03 5,000.00 0.50 
        

266,667  

10 Initial Design 0.75 175.00 14.15 
            

9,333  

11 Detail Design 0.75 175.00 14.15 
            

9,333  

12 Design inspections 0.53 250.00 9.91 
          

13,333  

13 Coding 4.00 33.00 75.05 
            

1,760  

14 Code inspections 3.30 40.00 61.91 
            

2,133  

15 Reuse acquisition 0.01 10,000.00 0.25 
        

533,333  
 
 

16 Static analysis 0.02 7,500.00 0.33 400,000         
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17 

 
COTS Package purchase 0.01 10,000.00 0.25 

        
533,333  

 
18 Open-source acquisition. 0.01 10,000.00 0.25 533,333         

19 Code security audit. 0.04 3,500.00 0.71 
        

186,667  
 

20 Ind. Verification. & Validation (IV&V). 0.07 2,000.00 1.24  106,667        

21 Configuration control. 0.04 3,500.00 0.71 
        

186,667  
 

22 Integration 0.04 3,500.00 0.71 186,667         

23 User documentation 0.29 450.00 5.50 
          

24,000  

24 Unit testing 0.88 150.00 16.51 
            

8,000  

25 Function testing 0.75 175.00 14.15 
            

9,333  

26 Regression testing 0.53 250.00 9.91 
          

13,333  

27 Integration testing 0.44 300.00 8.26 
          

16,000  

28 Performance testing 0.33 400.00 6.19 
          

21,333  

29 Security testing 0.26 500.00 4.95 
          

26,667  

30 Usability testing 0.22 600.00 4.13 
          

32,000  

31 System testing 0.88 150.00 16.51 
            

8,000  

32 Cloud testing 0.13 1,000.00 2.48 
          

53,333  

33 Field (Beta) testing 0.18 750.00 3.30 
          

40,000  

34 Acceptance testing 0.05 2,500.00 0.99 
        

133,333  

35 Independent testing 0.07 2,000.00 1.24 
        

106,667  

36 Quality assurance 0.18 750.00 3.30 
          

40,000  

37 Installation/training 0.04 3,500.00 0.71 
        

186,667  

38 Project measurement 0.01 10,000.00 0.25 
        

533,333  

39 Project office 0.18 750.00 3.30 
          

40,000  

40 Project management 4.40 30.00 82.55 
            

1,600  

Cumulative Results 20.44 6.46 377.97 

              

349  
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Note that in real life non-code work such as requirements, architecture, and design are not 

measured using LOC metrics.  But it is easy to retrofit LOC since the mathematics are not 

complicated.  Incidentally the author’s Software Risk Master (SRM) tool predicts all four values 

shown in table 6, and can also show story points, use case points, and in fact 23 different metrics. 

The “cumulative results” show the most common benchmark form of single values. However 

single values are clearly inadequate to show the complexity of a full set of development 

activities. 

Note that agile projects with multiple sprints would use a different set of activities.  But to 

compare agile projects against other kinds of development methods the agile results are 

converted into a standard chart of accounts shown by table 4. 

Note that there is no current equivalent to table 4 showing activity-based costs for SNAP metrics 

as of 2016.  Indeed the IFPUG SNAP committee has not yet addressed the topic of activity-based 

costs. 

Activity Based Benchmarks for Maintenance 

The word “maintenance” is highly ambiguous and can encompass no fewer than 25 different 

kinds of work.  In ordinary benchmarks “maintenance” usually refers to post-release defect 

repairs.  However some companies and benchmarks also include enhancements.  This is not a 

good idea since the funding for defect repairs and enhancements are from different sources, and 

often the work is done by different teams. 

Table 7:  Major Kinds of Work Performed Under the Generic Term “Maintenance” 

1. Major Enhancements (new features of > 20 function points) 
2. Minor Enhancements (new features of < 5 function points) 
3. Maintenance (repairing defects for good will) 
4. Warranty repairs (repairing defects under formal contract) 
5. Customer support (responding to client phone calls or problem reports) 
6. Error-prone module removal (eliminating very troublesome code segments) 
7. Mandatory changes (required or statutory changes) 
8. Complexity or structural analysis (charting control flow plus complexity metrics) 
9. Code restructuring (reducing cyclomatic and essential complexity) 
10. Optimization (increasing performance or throughput) 
11. Migration (moving software from one platform to another) 
12. Conversion (Changing the interface or file structure) 
13. Reverse engineering (extracting latent design information from code) 
14. Reengineering (transforming legacy application to modern forms) 
15. Dead code removal (removing segments no longer utilized) 
16. Dormant application elimination (archiving unused software) 
17. Nationalization (modifying software for international use) 
18. Mass updates such as Euro or Year 2000 Repairs 
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19. Refactoring, or reprogramming applications to improve clarity 
20. Retirement (withdrawing an application from active service) 
21. Field service (sending maintenance members to client locations) 
22. Reporting bugs or defects to software vendors 
23. Installing updates received from software vendors 
24. Processing invalid defect reports 
25. Processing duplicate defect reports 
 
As with software development, function point metrics provide the most effective normalization 
metric for all forms of maintenance and enhancement work. 
 
The author’s Software Risk Master (SRM) tool predicts maintenance and enhancement for a 
three year period, and can also measure annual maintenance and enhancements.  The entire set of 
metrics is among the most complex.  However Table 7 illustrates a three-year pattern: 
 
 

Table 7:  Three-Year Maintenance, Enhancement, and Support Data 

Enhancements (New Features) Year 1 Year 2 Year 3 3-Year 

2013 2014 2015 Totals 

Annual enhancement % 8.00% 200 216 233 649 

Application Growth in FP 2,500 2,700 2,916 3,149 3,149 

Application Growth in LOC 133,333 144,000 155,520 167,962 167,962 

Cyclomatic complexity growth 10.67 10.70 10.74 10.78 10.78 

Enhan. defects per FP 0.01 0.00 0.00 0.00 0.00 

Enhan. defects delivered 21 1 1 1 23 

Enhancement Team Staff 0 2.02 2.21 2.41 2.22 

Enhancement  (months) 0 24.29 26.51 28.94 79.75 

Enhancement (hours) 0 3,206.48 3,499.84 3,820.47 10,526.78 

Enhancement Team Costs 0 $273,279 $298,282 $325,608 $897,169 

Function points per month 8.23 8.15 8.06 8.14 

Work hours per function point 16.03 16.20 16.38 16.21 

Enhancement $ per FP $1,366.40 $1,380.93 $1,395.78 $1,381.79 

Maintenance (Defect Repairs) Year 1 Year 2 Year 3 3-Year 

2013 2014 2015 Totals 

Number of maintenance sites 1 1 1 1 1 

Clients served per site 74 94 118 149 149 
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Number of initial client sites 3 4 5 6 6 

Annual rate of increase 15.00% 22.51% 22.51% 22.51% 20.63% 

Number of initial clients 100 128 163 207 207 

Annual rate of increase 20.00% 27.51% 27.51% 27.51% 25.63% 

Client sites added 0 1 1 1 3 

Client sites lost 0 0 0 0 0 

Net change 0 1 1 1 3 

Year end client sites 0 4 5 6 6 

Clients added 0 28 36 46 110 

Clients lost 0 -1 -1 -1 -3 

Net change 0 28 35 45 107 

Year end clients 0 128 163 207 207 

Customer Defect/Help Requests Year 1 Year 2 Year 3 3-Year 

2013 2014 2015 Totals 

Customer satisfaction 0 95.34% 99.42% 100.16% 98.31% 

Customer help requests 0 67 62 60 189 

Customer complaints 0 24 18 15 56 

Enhancement bug reports 0 1 1 1 2 

Original bug reports 0 8 5 3 16 

High severity bug reports 0 1 1 0 2 

Security flaws 0 1 0 0 0 

Bad fixes: bugs in repairs 0 0 0 0 0 

Duplicate bug reports 0 8 7 6 22 

Invalid bug reports 0 2 1 1 4 

Abeyant defects 0 0 0 0 0 

Total Incidents  0 112 96 86 293 

Complaints per FP 0 0.01 0.01 0.01 0.02 

Bug reports per FP 0 0.00 0.00 0.00 0.01 

High severity bugs per FP 0 0.00 0.00 0.00 0.00 

Incidents per FP 0 0.04 0.04 0.03 0.12 

Maintenance and Support Staff Year 1 Year 2 Year 3 3-Year 

2013 2014 2015 Totals 



30 

 

Customer support staff 0 0.31 0.33 0.38 0.34 

Customer support  (months) 0 3.72 4.01 4.56 12.29 

Customer support (hours) 0 490.80 529.37 601.88 1,622.05 

Customer support costs 0 $17,568  $18,949  $21,545  $58,062 

Customer support $ per FP 0 $6.51  $6.50  $6.84  $6.62  

Maintenance staff 0 1.83 1.80 1.77 1.80 

Maintenance effort (months) 0 21.97 21.56 21.29 64.82 

Maintenance effort (hours) 0 2,899.78 2,846.43 2,810.38 8,556.59 

Maintenance  (tech. debt) 0 $247,140 $242,593 $239,521 $729,255 

Maintenance $ per FP 0 $91.53 $83.19 $76.06 $83.59  

Management staff 0 0.22 0.22 0.22 0.22 

Management effort (months) 0 2.69 2.66 2.67 8.02 

Management effort (hours) 0 354.92 351.56 352.39 1,058.87 

Management costs 0 $30,249 $29,963 $30,033 $90,245 

Management $ per FP 0 $11.20 $10.28 $9.54 $10.34  

TOTAL MAINTENANCE 

STAFF 0 2.36 2.35 2.38 2.36 

TOTAL EFFORT (MONTHS) 0 28.37 28.24 28.52 85.13 

TOTAL EFFORT (HOURS) 0 3,745.50 3,727.36 3,764.66 11,237.51 

TOTAL MAINTENANCE $ 0 $294,957  $291,505  $291,099  $877,561  

Maintenance $ per FP 0 $117.98 $116.60 $116.44 $117.01  

Maintenance hours per FP 0 1.39 1.28 1.20 1.29 

Maintenance$ per defect 0 $32,865 $50,957 $82,650 $55,490.43  

Maintenance $ per KLOC 0 $2,212 $2,186 $2,183 $6,582 

Maintenance $ per incident 0 $2,637.01 $3,049.51 $3,375.50 $3,020.67 

Incidents per support staff 0 360.99 286.03 226.96 873.98 

Bug reports per staff member 0 11.57 8.52 6.42 26.51 

Incidents per staff month 0 30.08 23.84 18.91 24.28 

Bug reports per staff month 0 0.96 0.71 0.54 0.74 

(MAINTENANCE + ENHANCMENT) 

Year 1 Year 2 Year 3 3-Year 

2013 2014 2015 Totals 

Enhancement staff 0 2.02 2.21 2.41 2.22 

Maintenance staff 0 2.36 2.35 2.38 2.36 

Total staff 0 4.39 4.56 4.79 4.58 
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Enhancement effort (months) 0 24.29 26.51 28.94 79.75 

Maintenance effort (months) 0 28.37 28.24 28.52 85.13 

Total effort (months) 0 52.67 54.75 57.46 164.88 

Total effort (hours) 0 6,951.97 7,227.19 7,585.12 21,764.29 

Enhancement Effort % 0 46.12% 48.43% 50.37% 48.37% 

Maintenance Effort % 0 53.88% 51.57% 49.63% 51.63% 

Total Effort % 0 100.00% 100.00% 100.00% 100.00% 

Enhancement cost 0 $273,279 $298,282 $325,608 $897,169 

Maintenance cost 0 $294,957 $291,505 $291,099 $877,561 

Total cost 0 $568,237 $589,786 $616,707 $1,774,730 

Enhancement cost % 0 48.09% 50.57% 52.80% 50.55% 

Maintenance cost % 0 51.91% 49.43% 47.20% 49.45% 

Total Cost 0 100.00% 100.00% 100.00% 100.00% 

Maintenance + Enhancement $ per FP $210.46 $202.26 $195.82 $202.85 

Maintenance + Enhancement hours per FP 2.57 2.48 2.41 2.49 

 
The mathematical algorithms for predicting maintenance and enhancements can work for 10 year 
periods, but there is little value in going past three years since business changes or changes in 
government laws and mandates degrade long-range predictions. 
 

Cost of Quality (COQ) for Quality Economics 

 
The cost of quality (COQ) metric is roughly the same age as the software industry, having 

originated in 1956 by Edward Feigenbaum.  It was later expanded by Joseph Juran and then 

made very famous by Phil Crosby in his seminal book “Quality is Free.”    

Quality was also dealt with fictionally in Robert M. Pirsig’s famous book Zen and the Art of 

Motorcycle Maintenance.  This book has become one of the best-selling books ever published 

and has been translated into many natural languages.  It has sold over 5,000,000 copies.  (By 

interesting coincidence Pirsig’s regular work was as a software technical writer.) 

Because COQ originated for manufacturing rather than for software, it needs to be modified 

slightly to be effective in a software context. 

The original concepts of COQ include: 

• Prevention costs 

• Appraisal costs 

• Internal failure costs 

• External failure costs 
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• Total costs 

For software a slightly modified set of topics for COQ include: 

• Defect prevention costs (JAD, QFD, Kaizan, prototypes, etc.) 

• Pre-Test defect removal costs (inspections, static analysis, pair programming, etc.) 

• Test defect removal costs (unit, function, regression, performance, system, etc.) 

• Post-release defect repairs costs (direct costs of defect repairs) 

• Warranty and damage costs due to poor quality (fines, litigation, indirect costs) 

Using round numbers and even values to simplify the concepts, the COQ results for a 20,000 

function point application with average quality and Java might be: 

Defect prevention      $1,500,000 

Pre-test defect removal     $3,000,000 

Test defect removal    $11,000,000 

Post release repairs      $5,500,000 

Damages and warranty costs     $3,000,000 

Total Cost of Quality (COQ)   $24,000,000 

COQ per function point            $1,200 

COQ per KLOC           $24,000  

COQ per SNAP point   Unknown as of 2016 

If technical debt were included, but it not, the technical debt costs would probably be an 

additional $2,500,000.  Among the issues with technical debt is that it focuses attention on a 

small subset of quality economic topics and of course does not deal with pre-release quality at 

all. 

Total Cost of Ownership (TCO) for Software Economic Understanding 

Because total cost of ownership cannot be measured or known until at least three years after 

release, it is seldom included in standard development benchmarks.  The literature of TCO is 

sparse and there is very little reliable information.  This is unfortunate because software TCO is 

much larger than the TCO of normal manufactured projects.  This is due in part to poor quality 

control and in part to the continuous stream of enhancements which average about 8% per 

calendar year after the initial release, and sometimes runs for periods of more than 30 calendar 

years. 
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Another issue with TCO is that since applications continue to grow, after several years the size 

will have increased so much that the data needs to be renormalized with the current size.  Table 5 

illustrates a typical TCO estimate for an application that was 2,500 function points at delivery 

but grew to more than 3,000 function points after a three-year period: 

Table 8:  Example of Total Cost of Ownership (TCO) Estimates 

Staffing Effort Costs $ per FP % of TCO 

at release 

Development 7.48 260.95 $3,914,201 $1,565.68 46.17% 

Enhancement 2.22 79.75 $897,169 $358.87 10.58% 

Maintenance 2.36 85.13 $877,561 $351.02 10.35% 

Support 0.34 12.29 $58,062 $23.22 0.68% 

User costs 4.20 196.69 $2,722,773 $1,089.11 32.12% 

Additional costs $7,500 $3.00 0.09% 

Total TCO 16.60 634.81 $8,477,266 $3,390.91 100.00% 

Function points at release             2,500  

Function points after 3 years             3,149  

Lines of code after 3 years         167,936  

KLOC after 3 years           167.94  

TCO function points/staff month 4.96 

TCO work hours per function point 26.61 

TCO cost per function point $2,692 

TCO cost per KLOC $50,479 

 

Note that as of 2017 there is no current data on TCO cost per SNAP point, nor even on a method 

for integrating SNAP into TCO calculations due to the fact that SNAP has not yet been applied 

to maintenance, enhancements, and user costs. 

Note that the TCO costs include normal development, enhancement, maintenance, and customer 

support but also user costs.  For internal project users participate in requirements, reviews, 

inspections, and other tasks so their costs and contributions should be shown as part of total cost 

of ownership (TCO). 

Note that customer support costs are low because this particular application had only 100 users at 

delivery.  Eventually users grew to more than 200 but initial defects declined so number of 

customer support personnel was only one person part time.  Had this been a high-volume 

commercial application with 500,000 users that grew to over 1,000,000 users customer support 

would have included dozens of support personnel and grown constantly. 
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Note that for internal IT and web projects, operational costs can also be included in total costs of 

ownership.  However operational costs are not relevant as TCO metrics for software that is run 

externally by external clients, such as software for automotive controls, avionics packages, 

medical devices such as cochlear implants, and commercial software sold or leased by 

companies such as Apple, Microsoft, IBM, and hundreds of others.  It is also not a part of most 

open-source TCO studies. 

Because applications grow at about 8% per year after release, the author suggests renormalizing 

application size at the end of every calendar year or every fiscal year.  Table 8 shows a total 

growth pattern for 10 years.  It is obvious that renormalization needs to occur fairly often due to 

the fact that all software applications grow over time as shown by table 8: 

 

Table 8:  SRM Multi-Year Sizing Example 

 

  Copyright © by Capers Jones.  All rights 

reserved. 
  

  Patent application 61434091.  February 2012.  

  

  Nominal application size 

  in IFPUG function points 10,000 

  

  SNAP points 1,389 

  

  Language C 

  

  Language level 2.50 

  

  Logical code statements 1,280,000 

  

  Function SNAP  Logical 

 Points Points Code 

 

  

1 Size at end of requirements 10,000             1,389  

     
1,280,000  

  
2 Size of requirement creep 2,000                278     256,000  

 

3 Size of planned delivery 12,000             1,667  

     
1,536,000  

 

4 Size of deferred features -4,800 
             

(667) 

      
(614,400) 

  
5 Size of actual delivery 7,200             1,000     921,600  

 

6 Year 1 usage 12,000             1,667  

     
1,536,000  Kicker 
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7 Year 2 usage 13,000             1,806  

     
1,664,000  

  
8 Year 3 usage 14,000             1,945  1,792,000      

 

9 Year 4 usage 17,000             2,361  

     
2,176,000  Kicker 

10 Year 5 usage 18,000             2,500  

     
2,304,000  

 
11 Year 6 usage 19,000             2,639  

     
2,432,000  

 

12 Year 7 usage 20,000             2,778  

     
2,560,000  

 
13 Year 8 usage 23,000             3,195  

     
2,944,000  Kicker 

14 Year 9 usage 24,000             3,334  

     
3,072,000  

 

15 Year 10 usage 25,000             3,473  

     
3,200,000  

 

     

 

Kicker = Extra features added to defeat competitors. 

  

 

 
Note:  Simplified example with whole numbers for clarity. 

  

 

 
Note:  Deferred features usually due to schedule deadlines. 

   

During development applications grow due to requirements creep at rates that range from below 

1% per calendar month to more than 10% per calendar month.  After release applications grow at 

rates that range from below 5% per year to more than 15% per year.  Note that for commercial 

software “mid-life kickers” tend to occur about every four years.  These are rich collections of 

new features intended to enhance competiveness. 

Needs for Future Metrics 

There is little research in the future metrics needs for the software industry.  Neither universities 

nor corporations have devoted funds or effort into evaluating the accuracy of current metrics or 

creating important future metrics. 

Some obvious needs for future metrics include: 

1. Since companies own more data than software, there is an urgent need for a “data point” 

metric based on the logic of function point metrics.  Currently neither data quality nor the 

costs of data acquisition can be estimated or measured due to the lack of a size metric for 

data. 

2. Since many applications such as embedded software operate in specific devices, there is a 

need for a “hardware function point” metric based on the logic of function points. 

3. Since web sites are now universal, there is a need for a “web site point” metric based on 

the logic of function points.  This would measure web site contents. 
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4. Since risks are increasing for software projects, there is a need for a “risk point” metric 

based on the logic of function points. 

5. Since cyber attacks are increasing in number and severity, there is a need for a “security 

point” metric based on the logic of function points. 

6. Since software value includes both tangible financial value and also intangible value, 

there is a need for a “value point” metric based on the logic of function points. 

7. Since software now has millions of human users in every country, there is a need for a 

“software usage point” metric based on the logic of function points. 

The goal would be to generate integrated estimates. 

Every major university and every major corporation should devote some funds and effort to the 

related topics of metrics validation and metrics expansion.  It is professionally embarrassing for 

one of the largest industries in human history to have the least accurate and most ambiguous 

metrics of any industry for measuring the critical topics of productivity and quality. 

Table 9 shows a hypothetical table of what integrated data might look like from a suite of related 

metrics that include software function points, hardware function points, data points, risk points, 

security points, and value points: 

   

       

Table 9:  Multi-Metric Economic       

Development Metrics  Number Cost Total 

Function points   1,000 $1,000 $1,000,000 

Data points   1,500 $500 $750,000 

Hardware function points  750 $2,500 $1,875,000 

Subtotal    3,250 $1,115 $3,625,000 

       

Annual Maintenance metrics     

Enhancements (micro function points) 150 $750 $112,500 

Defects (micro function points)  750 $500 $375,000 

Service points   5,000 $125 $625,000 

Data maintenance   125 $250 $31,250 

Hardware maintenance  200 $750 $150,000 
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Annual Subtotal   6,225 $179 $1,112,500 

       

TOTAL COST OF OWNERSHIP 

(TCO)    

(Development + 5 years of usage)    

Development   3,250 $1,115 $3,625,000 

Maintenance, enhancement, service 29,500 $189 $5,562,500 

Data maintenance   625 $250 $156,250 

Hardware maintenance  1,000 $750 $750,000 

Application Total TCO  34,375 $294 $10,093,750 

       

Risk and Value Metrics     

Risk points   2,000 $1,250 $2,500,000 

Security points   1,000 $2,000 $2,000,000 

Subtotal    3,000 $3,250 $4,500,000 

       

Value points   45,000 $2,000 $90,000,000 

       

NET VALUE   10,625 $7,521 $79,906,250 

       

RETURN ON INVESTMENT (ROI)   $8.92 

 

Note that as of 2017 the SNAP metric is not yet fully integrated into total software economic 

analysis. 
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Summary and Conclusions 

Although function point metrics have solved many technical problems of software measurement, 

the current state of software metrics and measurement practices in 2017 is a professional 

embarrassment. Hundreds of companies in the software industry continue to use metrics proven 

mathematically to be invalid and which violate standard economic assumptions such as LOC and 

cost per defect.   

Most universities do not carry out research studies on metrics validity but merely teach common 

metrics whether they work or not. 

Until the software industry has a workable set of productivity and quality metrics that are 

standardized and widely used, progress will resemble a drunkard’s walk. There are dozens of 

important topics that the software industry should know, but does not have effective data on circa 

2017.  Following are 21 samples where solid data would be valuable to the software industry: 

Table 10: Twenty One Problems that Lack Effective Metrics and Data Circa 2017 

1. How does agile quality and productivity compare to other methods? 

2. Does agile work well for projects > 10,000 function points? 

3. How effective is pair programming compared to inspections and static analysis? 

4. Do ISO/IEC quality standards have any tangible results in lowering defect levels? 

5. How effective is the new SEMAT method of software engineering? 

6. What are best productivity rates for 100, 1000, 10,000, and 100,000 function points? 

7. What are best quality results for 100, 1000, 10,000, and 100,000 function points? 

8. What are the best quality results for CMMI levels 1, 2, 3, 4, and 5 for large systems? 

9. What industries have the best software quality results? 

10. What countries have the best software quality results? 

11. How expensive are requirements and design compared to programming? 

12. Do paper documents cost more than source code for defense software? 

13. What is the optimal team size and composition for different kinds of software?  

14. How does data quality compare to software quality? 

15. How many delivered high-severity defects might indicate professional malpractice? 

16. How often should software size be renormalized because of continuous growth? 

17. How expensive is software governance? 

18. What are the measured impacts of software reuse on productivity and quality? 

19. What are the measured impacts of unpaid overtime on productivity and schedules? 

20. What are the measured impacts of adding people to late software projects? 

21. How does SNAP work for COQ, TCO, and activity-based costs? 

These 21 issues are only the tip of the iceberg and dozens of other important topics are in urgent 

need of accurate predictions and accurate measurements.  The software industry needs an 

effective suite of accurate and reliable metrics that can be used to predict and measure economic 
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productivity and application quality.  Until we have such a suite of effective metrics, software 

engineering should not be considered to be a true profession. 

Appendix A: Problems with Cost per Defect Metrics 

The cost-per-defect metric has been in continuous use since the 1960’s for examining the 

economic value of software quality.  Hundreds of journal articles and scores of books include 

stock phrases, such as “it costs 100 times as much to fix a defect after release as during early 

development.”   

Typical data for cost per defect varies from study to study but resembles the following pattern 

circa 2015: 

Defects found during requirements =      $250 

Defects found during design =      $500 

Defects found during coding and testing =  $1,250 

Defects found after release =    $5,000 

While such claims are often true mathematically, there are three hidden problems with cost per 

defect that are usually not discussed in the software literature: 

1. Cost per defect penalizes quality and is always cheapest where the greatest numbers of 

bugs are found. 

2. Because more bugs are found at the beginning of development than at the end, the 

increase in cost per defect is artificial.  Actual time and motion studies of defect repairs 

show little variance from end to end. 

3. Even if calculated correctly, cost per defect does not measure the true economic value of 

improved software quality.  Over and above the costs of finding and fixing bugs, high 

quality leads to shorter development schedules and overall reductions in development 

costs.  These savings are not included in cost per defect calculations, so the metric 

understates the true value of quality by several hundred percent. 

The cost per defect metric has very serious shortcomings for economic studies of software 

quality.  It penalizes high quality and ignores the major values of shorter schedules, lower 

development costs, lower maintenance costs, and lower warranty costs.  In general cost per 

defect causes more harm than value as a software metric.   Let us consider the cost per defect 

problem areas using examples that illustrate the main points. 
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Why Cost per Defect Penalizes Quality 

The well-known and widely cited “cost per defect” measure unfortunately violates the canons of 

standard economics.  Although this metric is often used to make quality economic claims, its 

main failing is that it penalizes quality and achieves the best results for the buggiest applications!    

Furthermore, when zero-defect applications are reached there are still substantial appraisal and 

testing activities that need to be accounted for.  Obviously the “cost per defect” metric is useless 

for zero-defect applications. 

As with KLOC metrics discussed in Appendix B, the main source of error is that of ignoring 

fixed costs.  Three examples will illustrate how “cost per defect” behaves as quality improves. 

In all three cases, A, B, and C, we can assume that test personnel work 40 hours per week and 

are compensated at a rate of $2,500 per week or $75.75 per hour using fully burdened costs.  

Assume that all three software features that are being tested are 100 function points in size and 

5000 lines of code in size (5 KLOC). 

Case A: Poor Quality 

Assume that a tester spent 15 hours writing test cases, 10 hours running them, and 15 hours 

fixing 10 bugs.  The total hours spent was 40 and the total cost was $2,500.  Since 10 bugs were 

found, the cost per defect was $250.  The cost per function point for the week of testing would be 

$25.00.   The cost per KLOC for the week of testing would be $500. 

Case B: Good Quality 

In this second case assume that a tester spent 15 hours writing test cases, 10 hours running them, 

and 5 hours fixing one bug, which was the only bug discovered.  

However since no other assignments were waiting and the tester worked a full week 40 hours 

were charged to the project.  The total cost for the week was still $2,500 so the cost per defect 

has jumped to $2,500.   

If the 10 hours of slack time are backed out, leaving 30 hours for actual testing and bug repairs, 

the cost per defect would be $2,273.50 for the single bug.   This is equal to $22.74 per function 

point or $454.70 per KLOC. 

As quality improves, “cost per defect” rises sharply. The reason for this is that writing test cases 

and running them act like fixed costs.   It is a well-known law of manufacturing economics that: 

“If a manufacturing cycle includes a high proportion of fixed costs and there is a reduction in 

the number of units produced, the cost per unit will go up.” 
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As an application moves through a full test cycle that includes unit test, function test, regression 

test, performance test, system test, and acceptance test the time required to write test cases and 

the time required to run test cases stays almost constant; but the number of defects found steadily 

decreases.  

Table 11 shows the approximate costs for the three cost elements of preparation, execution, and 

repair for the test cycles just cited using the same rate of $:75.75 per hour for all activities: 

Table 11:  Cost per Defect for Six Forms of Testing   

(Assumes $75.75 per staff hour for costs)    

       

 Writing Running Repairing TOTAL 

Number 

of $ per 

 
Test 

Cases 

Test 

Cases Defects COSTS Defects Defect 

       

Unit test $1,250.00 $750.00 $18,937.50 $20,937.50 50 $418.75 

       

Function test $1,250.00 $750.00 $7,575.00 $9,575.00 20 $478.75 

       

Regression test $1,250.00 $750.00 $3,787.50 $5,787.50 10 $578.75 

       

Performance test $1,250.00 $750.00 $1,893.75 $3,893.75 5 $778.75 

       

System test $1,250.00 $750.00 $1,136.25 $3,136.25 3 $1,045.42 

       

Acceptance test $1,250.00 $750.00 $378.75 $2,378.75 1 $2,378.75 

 

What is most interesting about table 1 is that cost per defect rises steadily as defect volumes 

come down, even though table 1 uses a constant value of 5 hours to repair defects for every 

single test stage!  In other words every defect identified throughout table 1 had a constant cost of 

$378.25 when only repairs are considered.   

In fact all three columns use constant values and the only true variable in the example is the 

number of defects found.  In real life, of course, preparation, execution, and repairs would all be 

variables.  But by making them constant, it is easier to illustrate the main point:  cost per defect 

rises as numbers of defects decline. 

Since the main reason that cost per defect goes up as defects decline is due to the fixed costs 

associated with preparation and execution, it might be thought that those costs could be backed 

out and leave only defect repairs.  Doing this would change the apparent results and minimize 

the errors, but it would introduce three new problems: 

 



42 

 

1. Removing quality cost elements that may total more than 50% of total quality costs 

would make it impossible to study quality economics with precision and accuracy. 

2. Removing preparation and execution costs would make it impossible to calculate cost of 

quality (COQ) because the calculations for COQ demand all quality cost elements. 

3. Removing preparation and execution costs would make it impossible to compare testing 

against formal inspections, because inspections do record preparation and execution as 

well as defect repairs. 

Backing out or removing preparation and execution costs would be like going on a low-carb diet 

and not counting the carbs in pasta and bread, but only counting the carbs in meats and 

vegetables.  The numbers might look good, but the results in real life would not be good. 

Let us now consider cost per function point as an alternative metric for measuring the costs of 

defect removal.  With the slack removed the cost per function point would be $18.75.  As can 

easily be seen cost per defect goes up as quality improves, thus violating the assumptions of 

standard economic measures.   

However, as can also be seen, testing cost per function point declines as quality improves.  This 

matches the assumptions of standard economics.  The 10 hours of slack time illustrate another 

issue:  when quality improves defects can decline faster than personnel can be reassigned. 

Case C: Zero Defects 

In this third case assume that a tester spent 15 hours writing test cases and 10 hours running 

them.  No bugs or defects were discovered.   

Because no defects were found, the “cost per defect” metric cannot be used at all.  But 25 hours 

of actual effort were expended writing and running test cases.  If the tester had no other 

assignments, he or she would still have worked a 40 hour week and the costs would have been 

$2,500.  

If the 15 hours of slack time are backed out, leaving 25 hours for actual testing, the costs would 

have been $1,893.75. With slack time removed, the cost per function point would be $18.38.  As 

can be seen again, testing cost per function point declines as quality improves.  Here too, the 

decline in cost per function point matches the assumptions of standard economics. 

Time and motion studies of defect repairs do not support the aphorism that “it costs 100 times as 

much to fix a bug after release as before.”  Bugs typically require between 15 minutes and 6 

hours to repair regardless of where they are found.   

(There are some bugs that are expensive and may takes several days to repair, or even longer.  

These are called “abeyant defects” by IBM.  Abeyant defects are customer-reported defects 
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which the repair center cannot recreate, due to some special combination of hardware and 

software at the client site.  Abeyant defects comprise less than 5% of customer-reported defects.)  

Considering that cost per defect has been among the most widely used quality metrics for more 

than 50 years, the literature is surprisingly ambiguous about what activities go into “cost per 

defect.”  More than 75% of the articles and books that use cost per defect metrics do not state 

explicitly whether preparation and executions costs are included or excluded.  In fact a majority 

of articles do not explain anything at all, but merely show numbers without discussing what 

activities are included. 

Another major gap is that the literature is silent on variations in cost per defect by severity level.  

A study done by the author at IBM showed these variations in defect repair intervals associated 

with severity levels. 

 Table 12 shows the results of the study.  Since these are customer-reported defects, “preparation 

and execution” would have been carried out by customers and the amounts were not reported to 

IBM.  Peak effort for each severity level is highlighted in blue. 

Table 12: Defect Repair Hours by Severity Levels for Field Defects  

       

 Severity 1 Severity 2 Severity 3 Severity 4 Invalid Average 

       

> 40 hours 1.00% 3.00% 0.00% 0.00% 0.00% 0.80% 

       

30 - 39 hours 3.00% 12.00% 1.00% 0.00% 1.00% 3.40% 

       

20 - 29 hours 12.00% 20.00% 8.00% 0.00% 4.00% 8.80% 

       

10 - 19 hours 22.00% 32.00% 10.00% 0.00% 12.00% 15.20% 

       

1 - 9 hours 48.00% 22.00% 56.00% 40.00% 25.00% 38.20% 

       

> 1 hour 14.00% 11.00% 25.00% 60.00% 58.00% 33.60% 

       

TOTAL 100.00% 100.00% 100.00% 100.00% 100.00% 100.00% 

As can be seen, the overall average would be close to perhaps 5 hours, although the range is 

quite wide. 

(As a matter of minor interest, the most troublesome bug found by the author during the time he 

was a professional programmer was a bug found during unit test, which took about 18 hours to 

analyze and repair.   The software application where the bug occurred was an IBM 1401 program 

being ported to the larger IBM 1410 computer.  The bug involved one instruction, which was 

valid on both the 1401 and 1410.  However the two computers did not produce the same machine 

code.  Thus the bug could not be found by examination of the source code itself, since that was 
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correct.  The error could only be identified by examining the machine language generated for the 

two computers.) 

In table 12, severity 1 defects mean that the software has stopped working.  Severity 2 means 

that major features are disabled.  Severity 3 refers to minor defects.  Severity 4 defects are 

cosmetic in nature and do not affect operations.  Invalid defects are hardware problems or 

customer errors inadvertently reported as software defects.  A surprisingly large amount of time 

and effort goes into dealing with invalid defects although this topic is seldom discussed in the 

quality literature. 

Yet another gap in the “cost per defect” literature is that of defect by origin.  Following in Table 

13 are typical results by defect origin points for 20 common defect types: 

 

Table 13:  Defect Repairs by Defect Origins 

 

 

Defect Find Repair Total 

 

Origins Hours Hours Hours 

 1 Security defects 11.00 24.00 35.00 

2 Errors of omission 8.00 24.00 32.00 

3 Hardware errors 3.50 28.00 31.50 

4 Abeyant defects 5.00 23.00 28.00 

5 Data errors 1.00 26.00 27.00 

6 Architecture defects 6.00 18.00 24.00 

7 Toxic requirements 2.00 20.00 22.00 

8 Requirements defects 5.00 16.50 21.50 

9 Supply chain defects 6.00 11.00 17.00 

10 Design defects 4.50 12.00 16.50 

11 Structural defects 2.00 13.00 15.00 

12 Performance defects 3.50 10.00 13.50 

13 Bad test cases 5.00 7.50 12.50 

14 Bad fix defects 3.00 9.00 12.00 

15 Poor test coverage 4.50 2.00 6.50 

16 Invalid defects 3.00 3.00 6.00 

17 Code defects 1.00 4.00 5.00 

18 Document defects 1.00 3.00 4.00 

19 User errors 0.40 2.00 2.40 

20 Duplicate defects 0.25 1.00 1.25 

 

 

Average 3.78 12.85 16.63 
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Table 13 shows “find hours” separately from “repair hours.”  The “find” tasks involve analysis 

of bug symptoms and the hardware/software combinations in use when the bug occurred.  The 

“repair” tasks as the name implies are those of fixing the bug once it has been identified, plus 

regression testing to ensure the repair is not a “bad fix.” 

As can be seen, errors of omission, hardware errors, and data errors are the most expensive.  

Note also that errors caused by bad test cases and by “bad fixes” or secondary bugs in bug 

repairs themselves are more expensive than original code bugs.  Note that even user errors and 

invalid defects require time for analysis and notifying clients of the situation. 

The term “abeyant defects” originated in IBM circa 1965.  It refers to defects that only occur for 

one client or one unique configuration of hardware and software.  They are very hard to analyze 

and to fix. 

 

Using Function Point Metrics for Defect Removal Economics 

Because of the fixed or inelastic costs associated with defect removal operations, cost per defect 

always increases as numbers of defects decline.  Because more defects are found at the beginning 

of a testing cycle than after release, this explains why cost per defect always goes up later in the 

cycle.   

An alternate way of showing the economics of defect removal is to switch from “cost per defect” 

and use “defect removal cost per function point”.  Table 14 uses the same basic information as 

Table 11, but expresses all costs in terms of cost per function point: 

Table 14  Cost per Function Point for Six Forms of Testing  

(Assumes $75.75 per staff hour for costs)    

(Assumes 100 function points in the application)   

      

 Writing Running Repairing TOTAL  Number of 

 Test Cases Test Cases Defects 

 $ PER 

F.P. Defects 

      

      

Unit test $12.50 $7.50 $189.38 $209.38 50 

      

Function test $12.50 $7.50 $75.75 $95.75 20 

      

Regression test $12.50 $7.50 $37.88 $57.88 10 

      

Performance test $12.50 $7.50 $18.94 $38.94 5 

      

System test $12.50 $7.50 $11.36 $31.36 3 

      

Acceptance test $12.50 $7.50 $3.79 $23.79 1 
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The advantage of defect removal cost per function point over cost per defect is that it actually 

matches the assumptions of standard economics.  In other words, as quality improves and defect 

volumes decline, cost per function point tracks these benefits and also declines.  High quality is 

shown to be cheaper than poor quality, while with cost per defect high quality is incorrectly 

shown as being more expensive. 

However, quality has more benefits to software applications than just those associated with 

defect removal activities.  The most significant benefit of high quality is that it leads to shorter 

development schedules and cheaper overall costs for both development and maintenance.  The 

total savings from high quality are much greater than the improvements in defect removal 

expenses. 

Let us consider the value of high quality for a large system in the 10,000 function point size 

range. 

The Value of Quality for Large Applications of 10,000 Function Points 
 
When software applications reach 10,000 function points in size, they are very significant 
systems that require close attention to quality control, change control, and corporate governance.  
In fact without careful quality and change control, the odds of failure or cancellation top 35% for 
this size range. 
 
Note that as application size increases, defect potentials increase rapidly and defect removal 
efficiency levels decline, even with sophisticated quality control steps in place.  This is due to the 
exponential increase in the volume of paperwork for requirements and design, which often leads 
to partial inspections rather than 100% inspections.  For large systems, test coverage declines and 
the number of test cases mounts rapidly but cannot usually keep pace with complexity. 
 
Table 15:  Quality Value for 10,000 Function Point Applications 

(Note: 10,000 function points = 1,250,000 C statements)  

    

 Average Excellent Difference 

 Quality Quality  

    

Defects per Function Point 6.00 3.50 -2.50 

    

Defect Potential 60,000 35,000 -25,000 

    

Defect Removal Efficiency 84.00% 96.00% 12.00% 

    

Defects Removed 50,400 33,600 -16,800 

    

Defects Delivered 9,600 1,400 -8,200 

    

Cost per Defect $341 $417 $76 
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Pre-Release    

    

Cost per Defect $833 $1,061 $227 

Post Release    

    

Development Schedule 40 28 -12 

(Calendar Months)    

    

Development Staffing 67 67 0.00 

    

Development Effort 2,654 1,836 -818 

(Staff Months)    

    

Development Costs $26,540,478 $18,361,525 -$8,178,953 

    

Function Points 3.77 5.45 1.68 

per Staff Month    

    

LOC per Staff Month 471 681 209.79 

    

Maintenance Staff 17 17 0 

    

Maintenance Effort 800 117 -683.33 

(Staff Months)    

    

Maintenance Costs $8,000,000 $1,166,667 -$6,833,333 

(Year 1)    

    

TOTAL EFFORT 3,454 1,953 -1501 

(STAFF MONTHS)    

    

TOTAL COST $34,540,478 $19,528,191 -$15,012,287 

    

TOTAL COST $414,486 $234,338 -$180,147 

PER STAFF MEMBER    

    

TOTAL COST  $3,454.05 $1,952.82 -$1,501.23 

PER FUNCTION POINT    

    

TOTAL COST PER LOC $27.63 $15.62 -$12.01 

    

AVERAGE COST $587 $739 $152 

PER DEFECT    

 

The glaring problem of cost per defect is shown in table 15.  Note that even though high quality 
reduced total costs by almost 50%, cost per defect is higher for the high-quality version than it is 
for the low-quality version!  Note that cost per function point matches the true economic value of 
high quality, while “cost per defect” conceals the true economic value.  Cost savings from better 
quality increase as application sizes increase.  The general rule is that the larger the software 
application the more valuable quality becomes.  The same principle is true for change control, 
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because the volume of creeping requirements goes up with application size. 

Appendix B: Side by Side Comparisons of 79 Languages using LOC and Function Points 

This appendix provides side-by-side comparisons of 79 programming languages using both 

function point metrics and lines of code metrics.  Productivity is expressed using both hourly and 

monthly rates.  The table assumes a constant value of 1000 function points for all 79 languages.  

However the number of lines of code varies widely based on the specific language. 

Also held constant is the assumption for every language that the amount of non-code work for 

requirements, architecture, design, documentation, and management is an even 3000 hours.   

As can be seen, Appendix B provides a mathematical proof that lines of code do not measure 

economic productivity.  In Appendix B and in real life, economic productivity is defined as 

“producing a specific quantity of goods for the lowest number of work hours.” 

Function points match this definition of economic productivity, but LOC metrics reverse true 

economic productivity and make the languages with the largest number of work hours seem 

more productive than the languages with the lowest number of work hours.  Of course results for 

a single language will not have the problems shown in Appendix B. 

In the following table “economic productivity” is shown in green, and is the “lowest number of 

work hours to deliver 1000 function points”.  Economic productivity is NOT “increasing the 

number of lines of code per month.” 

Although not shown in the table, it also includes a fixed value of 3,000 hours of non-code work 

for requirements, design, documents, management and the like.  Thus “total work hours” in the 

table is the sum of code development + non-code effort.  Since every language includes a 

constant value of 3,000 hours, this non-code effort is the “fixed cost” that drives up “cost per 

unit” when LOC declines.  In real life the non-code work is a variable, but it simplifies the math 

and makes the essential point easier to see:  LOC penalizes high-level languages. 
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Table 16:  Side-by-Side Comparison of function points and lines of code metrics 

     

     
Languages Size in Total 

Work 

hours FP per Work 

Work 

hours 

LOC 

per 

KLOC Work hours per FP Month Months 

per 

KLOC Month 

1 
Machine 
language 

       
640.00       119,364  

      

119.36  

          

1.11  

       
904.27  

      

186.51  708 

2 Basic Assembly 
       

320.00         61,182  

        

61.18  

          

2.16  

       
463.50  

      

191.19  690 

3 JCL 
       

220.69         43,125  

        

43.13  

          

3.06  

       
326.71  

      

195.41  675 

4 Macro Assembly 
       

213.33         41,788  

        

41.79  

          

3.16  

       
316.57  

      

195.88  674 

5 HTML 
       

160.00         32,091  

        

32.09  

          

4.11  

       
243.11  

      

200.57  658 

6 C 
       

128.00         26,273  

        

26.27  

          

5.02  

       
199.04  

      

205.26  643 

7 XML 
       

128.00         26,273  

        

26.27  

          

5.02  

       
199.04  

      

205.26  643 

8 Algol 
       

106.67         22,394  

        

22.39  

          

5.89  

       
169.65  

      

209.94  629 

9 Bliss 
       

106.67         22,394  

        

22.39  

          

5.89  

       
169.65  

      

209.94  629 

10 Chill 
       

106.67         22,394  

        

22.39  

          

5.89  

       
169.65  

      

209.94  629 

11 COBOL 
       

106.67         22,394  

        

22.39  

          

5.89  

       
169.65  

      

209.94  629 

12 Coral 
       

106.67         22,394  

        

22.39  

          

5.89  

       
169.65  

      

209.94  629 

13 Fortran    106.67            22,394   22.39          5.89           169.65      209.94    629 

14 Jovial 
       

106.67         22,394  

        

22.39  

          

5.89  

       
169.65  

      

209.94  629 

15 GW Basic 
         

98.46         20,902  

        

20.90  

          

6.32  

       
158.35  

      

212.29  622 

16 Pascal 
         

91.43         19,623  

        

19.62  

          

6.73  

       
148.66  

      

214.63  615 

17 PL/S 
         

91.43         19,623  

        

19.62  

          

6.73  

       
148.66  

      

214.63  615 

18 ABAP 
         

80.00         17,545  

        

17.55  

          

7.52  

       
132.92  

      

219.32  602 

19 Modula 
         

80.00         17,545  

        

17.55  

          

7.52  

       
132.92  

      

219.32  602 

20 PL/I 
         

80.00         17,545  

        

17.55  

          

7.52  

       
132.92  

      

219.32  602 

21 ESPL/I 
         

71.11         15,929  

        

15.93  

          

8.29  

       
120.68  

      

224.01  589 

22 Javascript 
         

71.11         15,929  

        

15.93  

          

8.29  

       
120.68  

      

224.01  589 

23 
Basic 
(interpreted) 

         
64.00         14,636  

        

14.64  

          

9.02  

       
110.88  

      

228.69  577 

24 Forth 64.00                 14,636  14.64         9.02          110.88        228.60       577 
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25 haXe 
         

64.00         14,636  

        

14.64  

          

9.02  

       
110.88  

      

228.69  577 

26 Lisp 
         

64.00         14,636  

        

14.64  

          

9.02  

       
110.88  

      

228.69  577 

27 Prolog 
         

64.00         14,636  

        

14.64  

          

9.02  

       
110.88  

      

228.69  577 

28 
SH (shell 
scripts) 

         
64.00         14,636  

        

14.64  

          

9.02  

       
110.88  

      

228.69  577 

29 Quick Basic 
         

60.95         14,082  

        

14.08  

          

9.37  

       
106.68  

      

231.04  571 

30 Zimbu 
         

58.18         13,579  

        

13.58  

          

9.72  

       
102.87  

      

233.38  566 

31 C++ 
         

53.33         12,697  

        

12.70  

        

10.40  

         
96.19  

      

238.07  554 

32 Go 
         

53.33         12,697  

        

12.70  

        

10.40  

         
96.19  

      

238.07  554 

33 Java 
         

53.33         12,697  

        

12.70  

        

10.40  

         
96.19  

      

238.07  554 

34 PHP 
         

53.33         12,697  

        

12.70  

        

10.40  

         
96.19  

      

238.07  554 

35 Python 
         

53.33         12,697  

        

12.70  

        

10.40  

         
96.19  

      

238.07  554 

36 C# 
         

51.20         12,309  

        

12.31  

        

10.72  

         
93.25  

      

240.41  549 

37 X10 
         

51.20         12,309  

        

12.31  

        

10.72  

         
93.25  

      

240.41  549 

38 Ada 95 
         

49.23         11,951  

        

11.95  

        

11.05  

         
90.54  

      

242.76  544 

39 Ceylon 
         

49.23         11,951  

        

11.95  

        

11.05  

         
90.54  

      

242.76  544 

40 Fantom 
         

49.23         11,951  

        

11.95  

        

11.05  

         
90.54  

      

242.76  544 

41 Dart 
         

47.41         11,620  

        

11.62  

        

11.36  

         
88.03  

      

245.10  539 

42 RPG III 
         

47.41         11,620  

        

11.62  

        

11.36  

         
88.03  

      

245.10  539 

43 CICS 
         

45.71         11,312  

        

11.31  

        

11.67  

         
85.69  

      

247.44  533 

44 DTABL 
         

45.71         11,312  

        

11.31  

        

11.67  

         
85.69  

      

247.44  533 

45 F# 
         

45.71         11,312  

        

11.31  

        

11.67  

         
85.69  

      

247.44  533 

46 Ruby 
         

45.71         11,312  

        

11.31  

        

11.67  

         
85.69  

      

247.44  533 

47 Simula 
         

45.71         11,312  

        

11.31  

        

11.67  

         
85.69  

      

247.44  533 

48 Erlang 
         

42.67         10,758  

        

10.76  

        

12.27  

         
81.50  

      

252.13  524 

49 DB2 
         

40.00         10,273  

        

10.27  

        

12.85  

         
77.82  

      

256.82  514 

50 LiveScript 
         

40.00         10,273  

        

10.27  

        

12.85  

         
77.82  

      

256.82  514 

51 Oracle 
         

40.00         10,273  

        

10.27  

        

12.85  

         
77.82  

      

256.82  514 

52 Elixir 
         

37.65           9,845  

          

9.84  

        

13.41  

         
74.58  

      

261.51  505 
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53 Haskell 
         

37.65           9,845  

          

9.84  

        

13.41  

         
74.58  

      

261.51  505 

54 
Mixed 
Languages 

         
37.65           9,845  

          

9.84  

        

13.41  

         
74.58  

      

261.51  505 

55 Julia 
         

35.56           9,465  

          

9.46  

        

13.95  

         
71.70  

      

266.19  496 

56 M 
         

35.56           9,465  

          

9.46  

        

13.95  

         
71.70  

      

266.19  496 

57 OPA 
         

35.56           9,465  

          

9.46  

        

13.95  

         
71.70  

      

266.19  496 

58 Perl 
         

35.56           9,465  

          

9.46  

        

13.95  

         
71.70  

      

266.19  496 

59 APL 
         

32.00           8,818  

          

8.82  

        

14.97  

         
66.80  

      

275.57  479 

60 Delphi 
         

29.09           8,289  

          

8.29  

        

15.92  

         
62.80  

      

284.94  463 

61 Objective C 
         

26.67           7,848  

          

7.85  

        

16.82  

         
59.46  

      

294.32  448 

62 Visual Basic 
         

26.67           7,848  

          

7.85  

        

16.82  

         
59.46  

      

294.32  448 

63 ASP NET 
         

24.62           7,476  

          

7.48  

        

17.66  

         
56.63  

      

303.69  435 

64 Eiffel 
         

22.86           7,156  

          

7.16  

        

18.45  

         
54.21  

      

313.07  422 

65 Smalltalk 
         

21.33           6,879  

          

6.88  

        

19.19  

         
52.11  

      

322.44  409 

66 IBM ADF 
         

20.00           6,636  

          

6.64  

        

19.89  

         
50.28  

      

331.82  398 

67 MUMPS 
         

18.82           6,422  

          

6.42  

        

20.55  

         
48.65  

      

341.19  387 

68 Forte 
         

17.78           6,232  

          

6.23  

        

21.18  

         
47.21  

      

350.57  377 

69 APS 
         

16.84           6,062  

          

6.06  

        

21.77  

         
45.93  

      

359.94  367 

70 TELON 
         

16.00           5,909  

          

5.91  

        

22.34  

         
44.77  

      

369.32  357 

71 Mathematica9 
         

12.80           5,327  

          

5.33  

        

24.78  

         
40.36  

      

416.19  317 

72 TranscriptSQL 
         

12.80           5,327  

          

5.33  

        

24.78  

         
40.36  

      

416.19  317 

73 QBE 
         

12.80           5,327  

          

5.33  

        

24.78  

         
40.36  

      

416.19  317 

74 X 
         

12.80           5,327  

          

5.33  

        

24.78  

         
40.36  

      

416.19  317 

75 Mathematica10 
           

9.14           4,662  

          

4.66  

        

28.31  

         
35.32  

      

509.94  259 

76 BPM 
           

7.11           4,293  

          

4.29  

        

30.75  

         
32.52  

      

603.69  219 

77 Generators 
           

7.11           4,293  

          

4.29  

        

30.75  

         
32.52  

      

603.69  219 

78 Excel 
           

6.40           4,164  

          

4.16  

        

31.70  

         
31.54  

      

650.57  203 

79 IntegraNova 
           

5.33           3,970  

          

3.97  

        

33.25  

         
30.07  

      

744.32  177 
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Average 

        

67.60         15,291  15.29 12.80 115.84 279.12 515 

 

It is obvious that in real life no one would produce 1000 function points in machine language, 

JCL, or some of the other languages in the table.  The table is merely illustrative of the fact that 

while function points may be constant and non-code hours are fixed costs, coding effort is 

variable and proportional to the amount of source code produced.  

In Table 16 the exact number of KLOC can vary language to language, from team to team, and 

company to company.  But that is irrelevant to the basic mathematics of the case.  There are three 

aspects to the math: 

Point 1:  When a manufacturing process includes a high proportion of fixed costs and there is a 

reduction in the units produced, the cost per unit will go up.  This is true for all industries and all 

manufactured products without exception. 

Point 2:  When switching from a low-level programming language to a high-level programming 

language, the number of “units” produced will be reduced. 

Point 3:  The reduction in LOC metrics for high-level languages in the presence of the fixed 

costs for requirements and design will cause cost per LOC to go up and will also cause LOC per 

month to come down for high-level languages. 

These three points are nothing more than the standard rules of manufacturing economics applied 

to software and programming languages. 

The LOC metric originated in the 1950’s when machine language and basic assembly were the 

only languages in use.  In those early days coding was over 95% of the total effort so the fixed 

costs of non-code work barely mattered.  It was only after high-level programming languages 

began to reduce coding effort and requirements and design became progressively larger 

components that the LOC problems occurred.  Table 17 shows the coding and non-coding 

percentages by language with the caveat that the non-code work is artificially held constant at 

3000 hours: 
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Table 17: Percentages of Coding and Non-Coding Tasks 

(Percent of work hours for code and non-code) 

 

     Languages Non-code Code 

 Percent Percent 

 

     1 Machine language 2.51% 97.49% 

 2 Basic Assembly 4.90% 95.10% 

 3 JCL 6.96% 93.04% 

 4 Macro Assembly 7.18% 92.82% 

 5 HTML 9.35% 90.65% 

 6 C 11.42% 88.58% 

 7 XML 11.42% 88.58% 

 8 Algol 13.40% 86.60% 

 9 Bliss 13.40% 86.60% 

 10 Chill 13.40% 86.60% 

 11 COBOL 13.40% 86.60% 

 12 Coral 13.40% 86.60% 

 13 Fortran 13.40% 86.60% 

 14 Jovial 13.40% 86.60% 

 15 GW Basic 14.35% 85.65% 

 16 Pascal 15.29% 84.71% 

 17 PL/S 15.29% 84.71% 

 18 ABAP 17.10% 82.90% 

 19 Modula 17.10% 82.90% 

 20 PL/I 17.10% 82.90% 

 21 ESPL/I 18.83% 81.17% 

 22 Javascript 18.83% 81.17% 

 23 Basic (interpreted) 20.50% 79.50% 

 24 Forth 20.50% 79.50% 

 25 haXe 20.50% 79.50% 

 26 Lisp 20.50% 79.50% 

 27 Prolog 20.50% 79.50% 

 28 SH (shell scripts) 20.50% 79.50% 

 29 Quick Basic 21.30% 78.70% 

 30 Zimbu 22.09% 77.91% 

 31 C++ 23.63% 76.37% 

 32 Go 23.63% 76.37% 

 33 Java 23.63% 76.37% 

 34 PHP 23.63% 76.37% 

 35 Python 23.63% 76.37% 
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36 C# 24.37% 75.63% 

 37 X10 24.37% 75.63% 

 38 Ada 95 25.10% 74.90% 

 39 Ceylon 25.10% 74.90% 

 40 Fantom 25.10% 74.90% 

 41 Dart 25.82% 74.18% 

 42 RPG III 25.82% 74.18% 

 43 CICS 26.52% 73.48% 

 44 DTABL 26.52% 73.48% 

 45 F# 26.52% 73.48% 

 46 Ruby 26.52% 73.48% 

 47 Simula 26.52% 73.48% 

 48 Erlang 27.89% 72.11% 

 49 DB2 29.20% 70.80% 

 50 LiveScript 29.20% 70.80% 

 51 Oracle 29.20% 70.80% 

 52 Elixir 30.47% 69.53% 

 53 Haskell 30.47% 69.53% 

 54 Mixed Languages 30.47% 69.53% 

 55 Julia 31.70% 68.30% 

 56 M 31.70% 68.30% 

 57 OPA 31.70% 68.30% 

 58 Perl 31.70% 68.30% 

 59 APL 34.02% 65.98% 

 60 Delphi 36.19% 63.81% 

 61 Objective C 38.22% 61.78% 

 62 Visual Basic 38.22% 61.78% 

 63 ASP NET 40.13% 59.87% 

 64 Eiffel 41.92% 58.08% 

 65 Smalltalk 43.61% 56.39% 

 66 IBM ADF 45.21% 54.79% 

 67 MUMPS 46.71% 53.29% 

 68 Forte 48.14% 51.86% 

 69 APS 49.49% 50.51% 

 70 TELON 50.77% 49.23% 

 71 Mathematica9 56.31% 43.69% 

 72 TranscriptSQL 56.31% 43.69% 

 73 QBE 56.31% 43.69% 

 74 X 56.31% 43.69% 

 75 Mathematica10 64.35% 35.65% 

 76 BPM 69.88% 30.12% 

 77 Generators 69.88% 30.12% 

 78 Excel 72.05% 27.95% 
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79 IntegraNova 75.57% 24.43% 

 

  

 
Average 29.08% 70.92% 

  

As can easily be seen for very low-level languages the problems of LOC metrics are minor.  But 

as language levels increase, a higher percentage of effort goes to non-code work while coding 

effort progressively gets smaller.  Thus LOC metrics are invalid and hazardous for high-level 

languages. 

It might be thought that omitting non-code effort and only showing coding may preserve the 

usefulness of LOC metrics, but this is not the case.  Productivity is still producing deliverable for 

the lowest number of work hours or the lowest amount of effort.   

Producing a feature in 500 lines of Objective-C at a rate of 500 LOC per month has better 

economic productivity than producing the same feature in 1000 lines of Java at a rate of 600 

LOC per month.   

Objective-C took 1 month or 149 work hours for the feature.  Java took 1.66 months or 247 

hours.  Even though coding speed favors Java by a rate of 600 LOC per month to 500 LOC per 

month for Objective-C, economic productivity clearly belongs to Objective-C because of the 

reduced work effort. 

Function points were specifically invented by IBM to measure economic productivity.  Function 

point metrics stay constant no matter what programming language is used.  Therefore function 

points are not troubled by the basic rule of manufacturing economics that when a process has 

fixed costs and the number of units goes down, cost per unit goes up.  Function points are the 

same regardless of programming languages.  Thus in today’s world of 2014 function point 

metrics measure software economic productivity, but LOC metrics do not. 
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