
Exploring Game Architecture Best-Practices

with Classic Space Invaders

Ed Keenan

DePaul University
243 South Wabash
Chicago, IL, USA

ekeenan2@cs.depaul.edu

Adam Steele

DePaul University
243 South Wabash
Chicago, IL, USA

asteele@cs.depaul.edu

ABSTRACT
The classic arcade game Space Invaders provides an ideal

environment for students to learn about best practices in game

software architectures. We discuss the challenges of creating a

good game architecture, and show how our problem space is an

ideal environment in which to experiment with the challenges and

tradeoffs inherent in any software design. We discuss in detail

how each student created and engineered their game using good

architectural design principles in general and gang-of-four design

patterns in particular.

Categories and Subject Descriptors

D.2.11 [Software Engineering]: Software Architectures-

Patterns, K.3.2 [Computing Milieux]: Computer and Information

Science Education - Computer science education, D.3.3

[Programming Languages]: Language Constructs and Features -

Frameworks, I.2.1 [Artificial Intelligence]: Applications and

Expert Systems - Games

General Terms

Algorithms, Documentation, Design

Keywords
Software Architecture, Design Patterns, Education, Framework,

Games Engine, Software Engineering

1. INTRODUCTION
In this paper we discuss how the classic arcade game Space

Invaders[9] can be used to highlight the challenges and choices

that need to be addressed by game software architect students

attempting to recreate the game with modern software engineering

best-practices.

Traditional game programming is about wringing the maximum

performance from the underlying hardware, and this coupled with

the tight-time constraints for delivering computer games means

that in many cases games are delivered with a codebase that does

not conform to the precepts of good software engineering[7] In

the SE456 – Game Architecture course at DePaul University’s

School of Computing and Digital Media (CDM), we use the

traditional Space Invaders arcade game as a means to explore how

architectural decisions impact the engineering characteristics of a

software game system.

We first examine the problems with the software architecture of

many computer games, problems that are not uncommon in other

production software systems. We then discuss in detail how the

students in the Game Architecture course implemented Space

Invaders using a number of pre-written components and modules

using design patterns as micro-architectures in order to create a

high quality high-level architecture[3].

2. ARCHITECTURE BEST-PRACTICES

2.1 Problems with Game Architectures
Based on previous experiences with game development classes,

when students are left to their own devices they often implement

game systems as a monolithic code base with very little

architectural structure. In addition, the students also tend to

develop the software in a short-term fashion, focusing on the next

feature at hand without concern for the overall design of the

system.

The architectural problems of the student’s systems are the same

ones that many software systems fall prey to, in that their

components are highly coupled (i.e. dependent) on each other.

This gives rise to systems that are fragile, where small changes in

one part of the codebase affect other parts in non-obvious ways.

It also results in brittle systems that discourage programmers from

making minor modifications and/or refactoring the code to

increase its quality.

This is a problem, since in many cases a game’s play can’t be

evaluated for the fun-factor until the feature is prototyped and

implemented. If the underlying system is brittle, adding a new

feature may break the existing system, and the students approach

to change is driven by the need to minimize the impact of the new

modified code, rather than to modify the game to produce a better

play experience.

The need to apply software engineering principles such as

modular and orthogonal underlying systems is critical to allow for

continuous game play testing during development. Continuous

refactoring of systems to explore new game play features and to

preserve the decoupling of system is needed to produce game

systems that are high quality from both the game play and

software engineering perspectives.

A flexible system, in which changes can be made easily allows the

system to be redesigned as necessary, and doesn’t lock the

development team into poor legacy decisions. Many game

engines, in particular, are examples of brittle systems because

much of their functionality is hard-wired and depends on magic

Permission to make digital or hard copies of all or part of this work for

personal or classroom use is granted without fee provided that copies are
not made or distributed for profit or commercial advantage and that

copies bear this notice and the full citation on the first page. To copy

otherwise, to republish, to post on servers or to redistribute to lists,
requires prior specific permission and/or a fee.

GAS'11, May 22, 2011, Waikiki, Honolulu, HI, USA

Copyright 2011 ACM 978-1-4503-0578-5/11/05... $10.00.

Permission to make digital or hard copies of all or part of this work for
personal or classroom use is granted without fee provided that copies are
not made or distributed for profit or commercial advantage and that copies
bear this notice and the full citation on the first page. To copy otherwise, to
republish, to post on servers or to redistribute to lists, requires prior specific
permission and/or a fee.
GAS’11, May 22, 2011, Waikiki, Honolulu, HI, USA
Copyright 2011 ACM 978-1-4503-0578-5/11/05 ...$10.00

21

numbers and other critical information scattered throughout the

code so they don’t scale well[10].

Furthermore, the lack of modularity limits the opportunities for

distributed development and sophisticated versioning. This also

means that unit testing has limited utility because so much of the

systems behavior can only be tested at the system-wide level. An

unappreciated problem is that a messy, convoluted architecture

gives rise to documentation that is equally confused and hard to

comprehend.

The problems encountered in designing and modifying game

architectures mirrors that of many other software systems, and as

such is an ideal environment for teaching students best practices

in software architecture design, and general software engineering

principles.

2.2 Teaching a Game Architecture Course
Teaching a Game Architecture course is challenging because

unless you are careful it is possible to get bogged down in the

low-level minutiae of the graphic system, sound system, the

memory system or the file system. As such, we chose to provide

the students with the basic framework that is described and

provided in “Killer Game Programming in Java”[2].

This leaves us free to focus on the middle and high-level

architectural concerns. This is also a common pattern in Industry

where most of the low-level functionality is provided by

commercial or proprietary frameworks.

In particular, we challenge our students to be able to connect and

coordinate the many low-level systems flexibly within the higher-

level architecture; how to avoid the problem of having game logic

seep into the design of the overall architecture and that of the low-

level system; and finally, how to engineer a software system that

is robust and data driven[4].

We have taken a fairly radical approach to teaching game

architecture, in that we use a traditional game and have them re-

engineer it, rather than have them create a new game from scratch.

We have found this to be a productive approach as the students

can focus on the software engineering problems rather than the

challenges associated with designing a new game. Even though

Space Invaders is a classic arcade game there is a large amount of

reference information available, for example there are a number of

YouTube videos that provide a reference specification for the

game’s behavior1. Furthermore the design of the invader sprites is

commonly available.

o

Figure 1. Invader Sprites

The original Space Invaders game was designed and programmed

by Toshihiro Nishikado for Taito, Japan in 1978[9].

The game was originally programmed in assembly language on

the Intel 8080 CPU. The design of program was built around a

main with branching logic to execute the appropriate subroutines.

The difficulty in maintaining the 60Hz graphics update rates

meant that the original game was extremely tightly coupled, and

was not at all modifiable.

1 http://www.youtube.com/watch?v=VP2T3YlTDG8

2.3 The Course Project
During the first part of the class there were 12 students in the class

and each of them was assigned to develop one of six different

components: creation of alien sprites, movement of the grid of

alien sprites, shield collision and display system, missile collision

system, sprite animation system and the sound system. Each

student was responsible for doing a modern design of their

component, e.g. UML diagrams, use cases, design documents and

a stand-alone implementation. The students were required to use

one or more Gang-of-Four[5] design patterns in their

implementation.

CollisionState
+collision():void

DisableState
+collision():void

EnableState
+collision():void

<<interface>>

IBarrierState

+collision():void

Barrier

-mstate: IBarrierState

+box():BoundingBox
+move(in point: Point): void
+draw(in graphics:Graphics):void

+collision():void

<<interface>>

ISprite

+box():BoundingBox
+move()(in Point: Point):void
+draw(in graphics: Graphics):void

+collision():void

1 1

Figure 2. Partial UML Diagram of the Collision System.

Students were free to design and implement each component as

they see fit, the only requirement is that they use design patterns

where appropriate. Since there are many ways to solve and

architect a problem, the students’ designs varied greatly. The

students were able to view and critique all of their fellow

student’s designs and documentation. Each component was built

with the following design responsibilities:

Creation of the

Alien Sprites

 Creation of the grid and reuse of

similar images to reduce the number of

images resident in memory

Movement of the

Grid of Alien

Sprites

 Determine how to manage and move

the grid as a collective

 Updating each individual movement to

appear uniform

 Collision of the grid with the screen

boundaries

 Changing the speed of descent of the

aliens and the movement of the rows

Shield Collision

and Display

System

 Determine how to have the shield be

eroded by missiles from the aliens

 Determine how the shield be eroded by

missiles from the player

 Shield as a protector from alien

missiles

 Determine the underlining collision

grid and update mechanism

Collision system Create a collision system that

determines collisions between the

missiles and game objects,

 such as the aliens, player ship, UFOs

 The collision system should be able to

determine if any missile hit the

collision box and intersected the

missile box with the target box

 Determine the state of the collision

(non-intersecting or intersecting)

22

Sprite/Animation

system

 Create a sprite system that displays the

sprite image

 Animates the series of images of sprite

images

 Ability to reuse sprite images instead

having duplicate images loaded at the

same time.

 Should be general enough to display

any sprite used in the game, such as

alien ships, shields, player ship, UFOs

and missiles

Sound system Create a system that loads and plays

static game wavs

 Allow other systems to call single of

sounds for their respective effects

 Ability to control individual volumes

of each sound playing

 Allow many different sounds to be

playing at once, i.e. multiple

overlapping explosions

 Mute and overall volume

Figure 3.Component Design Responsibilities

Using the components Students were responsible for creating a

completed game that mimicked the original arcade game as

faithfully as possible. This included the cycling and transitions

between the Select Screen, Enter Game and Game Over

screens. The game was required to be played on several levels,

the high score was track, one or two players, and keep track of

credits[1].

Figure 4. Game with Debug Collision Boxes

The students could freely use any part of the components that the

other students developed, including their source code. This didn’t

deter from the challenge of the assignment, as everyone’s

implementation of their components varied so greatly. Any

reused components from other students needed to be significantly

refactored to be incorporated into a student’s game. Therefore the

original component design served more as a reference design.

SpaceInvaderPanel LevelFactory

getEnemies()

create

enemies

create

move()

flipSprite()

dropBomb()

enemies:EnemyGrid

Enemy

Figure 5. Sequence Diagram of Enemy Interactions

Throughout this process, there were three fundamental goals of

our new version of the Space Invaders. The new architectural

design had to have its components decoupled (orthogonal) from

each other; any feature needed the ability to be scalable in

quantity, and the components had to define as much the game

behavior through its objects’ data (data driven architecture)[8].

By focusing on these goals and debating and analyzing the

components of the game, several design patterns [5] emerged in

common use:

Singleton – Global singletons were used to control player’s state,

number of lives, points. Similar structures were used to hold

the state of the bombs, player’s missiles and the controlling

data for the collision system and timers.

Composite – The collection of the aliens moving as one group.

The groups of aliens were broken into a hierarchy of columns,

allowing the group to move uniformly and collide as a

collection against the extremes of the screen.

Factory – Create the aliens objects, based on type of aliens, its

location, collision object and sprite data. Also factory pattern

for the shields.

Flyweight – Easy way to replicate sprites with similar attributes

(e.g. collision and textures), instead of creating many

instances of fully formed data.

Strategy – Missile behave differently depending on whether their

targets are shields, aliens, UFOs or off screen.

Observer – Call back mechanism for collisions and explosion

effects of the aliens, and I/O from the keyboard controller.

Command – Parameterization of the collision behavior depending

on what type of object was hit. Difference between shields,

alien, alien’s bomb, UFO, off screen, and ground.

Iterator – Used in the collision system to collide with moving

objects on the screen. Moving object versus static objects,

broken into hierarchy layers to minimize the number of active

checks.

Null Object – Insures unified behavior on all objects, whether

they are specialized or not, thereby increasing the robustness

of the design.

State – State of the missiles, individual aliens, and shields,

including the transitions effect of explosions.

Memento - Switching between player 1 and player 2 as to

preserve the same state of the two games.

2.4 Shield System Component
In this section we provide an analysis the student shield system.

Each shield is constructed of collection of smaller barriers. These

smaller units are responsible for collision detection, and each unit

keeps track of the state of the shield. The shields slowly erode

away with each collision until the division is disabled. At this

point, the unit is not included in any future collision detection.

23

 The shield manager contains the list of shields (these are

the units).

 The shield contains the shield state (this determines the

erosion of the unit).

Figure 6. Evolution of Shield System

The erosion system in the collision module went through several

iterations. Initially the shield was subdivided into rectangular

grids. Random colors indicate the division positions (top image)

in Figure 5. Each division would have random deterioration of

the grids, until they took enough damage to be eliminated.

This approach created an issue in a region where there was

collision hit was sufficient enough to create complete destruction.

One would expect the neighboring areas to have some damage as

well, simulating an explosion as the missile or bomb hits the

shield creating a crater effect.

To imitate this crater damage effect, the semi-random

deterioration of the shield needs to be in a circular density pattern.

More damage towards the center of the explosion with a spread of

less damage further away from the center. This is effect was

constructed by random pixelation within an outlying circle with

different densities. These circles of random damage spread across

the neighboring grids showing damage.

To insure that only damage to the specific grid that had a direct hit

accumulates damage. The grid size of each subsequent hit

reduces the size of the collision box in three steps before the

fourth hit completely removes the grid. The neighboring grids are

not effect by this subdivision, but do show random deterioration

by the crater effect.

Similar problem solving experiences were achieved the students

developing the other components of the game. They focused on

reverse engineering the game by reviewing the reference videos.

As they were able to solve the problem, they refactored their

solutions to better use design patterns in their designs.

3. STUDENT EXPERIENCE
Students’ final submission included an updated design document

with critical systems diagrammed in UML. A reflection paper

describing their experience on the project was also submitted,

including their development blogs[6]. Reflection paper asked

several questions: what was the most difficult task, description

and insights on the design patterns used, view point on the

software complexities and issues of video game development, and

lessons gained in this class.

Most of the students weren’t aware of the complexities of game

software development. Extrapolating on their experience for this

small classic arcade game, yielded better appreciation and respect

to the modern games of this generation.

Most students now see a direct correlation between the use and

need of Deign Patterns to help organize, structure, and implement

complex systems. They stated that they would continue to look

for Design Pattern uses in future software development

independent of the domain (game or general purpose).

Students also reflected about the nature of software development,

stating that there numerous ways to solve a problem. They

understood their tradeoff for each design decision, both in the

complexity and efficiency. The scheduling and planning were

also constant companions on their journey, gaining insights on the

different ways to organize and execute their respective projects.

4. CONCLUSION
Using the classic arcade game Space Invaders as a reference, our

students have re-engineered the game to gain practical experience

using good software engineering principles. They developed

fundamental understanding of game engine architecture through

design and implementation of complex game systems. The

students saw in detail how the use of design patterns gave rise to a

software architecture that was decoupled, scalable and data-

driven. The principles learnt in this restricted problem can

certainly be applied providing best practices for building more

general software architectures.

5. ACKNOWLEDGMENTS.
We wish to thank the DePaul University’s Architecture of

Computer Games class, administration of DePaul and DePaul

College of CDM, and the School of Computing’s Software

Engineering program who have supported the course

6. REFERENCES
[1] Blumenthal, R. 2009. “Space Invaders: A UM L Case

Study’, Regis University, Avail at
http://www.docstoc.com/docs/15330021/Space-Invaders
(downloaded 10/17/10)

[2] Davison, A. 2005. Killer Game Programming in Java,
O'Reilly Media, Inc.

[3] Fan, M., Stallaert, J., and Whinston, A.B. 2000 “The
Adoption and Design Methodologies of Component-Based
Enterprise Systems,” European Journal of Information
Systems (9:1) pp. 25-35.

[4] Gamma, E., Helm, R., Johnson, R. and Vlissides, J. 2002.
Design patterns: abstraction and reuse of object-oriented
design. In Software pioneers, Manfred Broy and Ernst Denert
(Eds.). Springer-Verlag New York, Inc., New York, NY,
USA 701-717.

[5] Gamma, E., Helm, E., Johnson, R., Vlissides, J. 1995.
Design Patterns: Elements of Reusable Object-Oriented
Software, Addison-Wesley.

[6] Keenan, E., Steele, A. and Jia, X. 2010. "Simulating Global
Software Development in a Course Environment," Global
Software Engineering, International Conference on, pp. 201-
205, 2010 5th IEEE International Conference on Global
Software Engineering,.

[7] Kruchten, P.; Obbink, H.; Stafford, J. 2006. "The Past,
Present, and Future for Software Architecture," Software,
IEEE , vol.23, no.2, pp. 22- 30, March-April 2006

[8] Paulisch, F. 1994.; , "Software architecture and reuse-an
inherent conflict?,", Software Reuse: Advances in Software
Reusability, Proceedings., Third International Conference on
, vol., no., pp.214, 1-4 Nov 1994

[9] Retro Gamer. 2007. "The Definitive Space Invaders". Retro
Gamer (Imagine Publishing) (41): 24–33. September 2007.

[10] Sharp, J. Ryan S. 2010, “A theoretical framework of
component-based software development phases”, SGMIS
Database, Volume 41 Issue 1

24

