
Updates on XcalableMP PGAS Language

Mitsuhisa Sato

Director of Center for Computational Science (CCS),
University of Tsukuba,

Team leader of programming environment research team,
Advanced Institute for Computational Science (AICS), RIKEN

0

1

What’s XcalableMP?
 XcalableMP (XMP for short) is:

 A programming model and language for distributed memory , proposed by XMP WG
 http://www.xcalablemp.org

 XcalableMP Specification Working Group (XMP WG)
 XMP WG is a special interest group, which organized to make a draft on “petascale” parallel

language.
 Started from December 2007, the meeting is held about once in every month.

 Mainly active in Japan, but open for everybody.

 XMP WG Members (the list of initial members)
 Academia: M. Sato, T. Boku (compiler and system, U. Tsukuba), K. Nakajima (app. and

programming, U. Tokyo), Nanri (system, Kyusyu U.), Okabe (HPF, Kyoto U.)
 Research Lab.: Watanabe and Yokokawa (RIKEN), Sakagami (app. and HPF, NIFS), Matsuo

(app., JAXA), Uehara (app., JAMSTEC/ES)
 Industries: Iwashita and Hotta (HPF and XPFortran, Fujitsu), Murai and Seo (HPF, NEC),

Anzaki and Negishi (Hitachi), (many HPF developers!)

 A prototype XMP compiler is being developed by U. of Tsukuba.
 XMP is proposed for a programming language for the K computer, supported by the

programming environment research team.

2

 A PGAS language. Directive-based language extensions
for Fortran and C for the XMP PGAS model
 To reduce the cost of code-rewriting and education

 Global view programming with global-view distributed
data structures for data parallelism
 A set of threads are started as a logical task. Work mapping

constructs are used to map works and iteration with affinity
to data explicitly.

 Rich communication and sync directives such as “gmove”
and “shadow”.

 Many concepts are inherited from HPF

 Co-array feature of CAF is adopted as a part of the
language spec for local view programming (also
defined in C).

directives
Comm, sync and work-sharing

Duplicated execution

node0 node1 node2

XcalableMP : directive-based language eXtension
for Scalable and performance-aware Parallel Programming

http://www.xcalablemp.org

int array[N];
#pragma xmp nodes p(4)
#pragma xmp template t(N)
#pragma xmp distribute t(block) on p
#pragma xmp align array[i][with t(i)

#pragma xmp loop on t(i) reduction(+:res)
for(i = 0; i < 10; i++)

array[i] = func(i,);
res += …;

} }

3XMP project

Code Example

int array[YMAX][XMAX];

#pragma xmp nodes p(4)
#pragma xmp template t(YMAX)
#pragma xmp distribute t(block) on p
#pragma xmp align array[i][*] with t(i)

main(){
int i, j, res;
res = 0;

#pragma xmp loop on t(i) reduction(+:res)
for(i = 0; i < 10; i++)
for(j = 0; j < 10; j++){

array[i][j] = func(i, j);
res += array[i][j];

}
}

add to the serial code : incremental parallelization

data distribution

work mapping and data synchronization

4XMP project

Overview of XcalableMP
 XMP supports typical data parallelization with the description of data

distribution and work mapping under "global view“
 Some sequential code can be parallelized with directives, like OpenMP.

 XMP also includes Co-array notation of PGAS (Partitioned Global Address
Space) feature as "local view" programming.

Two-sided comm. (MPI) One-sided comm.
(remote memory access)

Global view Directives

Local view
Directives

(Coarray/PGAS)

Parallel platform (hardware+OS)

MPI
Interface

Array section
in C/C++

XMP
runtime
libraries

XMP parallel execution model

User applications

•Support common pattern
(communication and work-
sharing) for data parallel
programming
•Reduction and scatter/gather
•Communication of sleeve area
•Like OpenMPD, HPF/JA, XFP

5XMP project

Nodes, templates and data/loop
distributions

 Idea inherited from HPF (and Fortran-D)
 Node is an abstraction of processor and memory in distributed memory

environment, declared by node directive.

 Template is used as a dummy array distributed on nodes

 A global data is
aligned to the template

 Loop iteration must also be
aligned to the template
by on-clause.

variable
V1

variable
V2

template
T1

nodes
P

Distribute directive

Align
directive

loop
L1

Loop
directive

variable
V3

template
T2

loop
L2

loop
L3

Align
directive

Align
directive

Loop
directive

Loop
directive

Distribute directive

#pragma xmp nodes p(32)
#pragma xmp nodes p(*)

#pragma xmp template t(100)
#pragma distribute t(block) onto p

#pragma xmp align array[i][*] with t(i)

#pragma xmp loop on t(i)

6XMP project

Array data distribution
 The following directives specify a data distribution among nodes

 #pragma xmp nodes p(*)
 #pragma xmp template T(0:15)
 #pragma xmp distribute T(block) on p
 #pragma xmp align array[i] with T(i)

node1

node2

node3

node0

array[]

Reference to assigned to other
nodes may causes error!!

Control computation: Assign loop iteration
to nodes which compute own data

Explicit Communication between nodesThis is different from
HPF and UPC

7XMP project

Parallel Execution of “for” loop

array[]

node1

node2

node3

node0

 Execute for loop to compute on array

Data region to be computed
by for loop

Execute “for” loop in parallel with affinity to array distribution by on-clause：
#pragma xmp loop on t(i)

distributed array

#pragma xmp loop on t(i)
for(i=2; i <=10; i++)

#pragma xmp nodes p(*)
#pragma xmp template T(0:15)
#pragma xmp distributed T(block) on
#pragma xmp align array[i] with T(i)

Similar to UPC forall

8XMP project

Shadow and reflect: Data synchronization of array

 Exchange data only on “shadow” (sleeve) region
 If neighbor data is required to communicate, then only sleeve

area can be considered.
 example：b[i] = array[i-1] + array[i+1]

node1

node2

node3

node0

array[]

Programmer specifies sleeve region explicitly
Directive：#pragma xmp reflect array

#pragma xmp shadow array[1:1]

#pragma xmp align array[i] with t(i)

9XMP project

gmove directive

 The "gmove" construct copies data of distributed arrays in
global-view.
 When no option is specified, the copy operation is performed collectively

by all nodes in the executing node set.
 If an "in" or "out" clause is specified, the copy operation should be done

by one-side communication ("get" and "put") for remote memory access.

!$xmp nodes p(*)
!$xmp template t(N)
!$xmp distribute t(block) to p
real A(N,N),B(N,N),C(N,N)
!$xmp align A(i,*), B(i,*),C(*,i) with t(i)

A(1) = B(20) // it may cause error
!$xmp gmove

A(1:N-2,:) = B(2:N-1,:) // shift operation
!$xmp gmove

C(:,:) = A(:,:) // all-to-all
!$xmp gmove out

X(1:10) = B(1:10,1) // done by put operation

n
o
d
e
1

n
o
d
e
2

n
o
d
e
3

n
o
d
e
4

n
o
d
e
1

n
o
d
e
2

n
o
d
e
3

n
o
d
e
4

node1

node2
node3

node4

A B

C

10XMP project

XcalableMP Global view directives

 Execution only master node
 #pragma xmp block on master

 Broadcast from master node
 #pragma xmp bcast (var)

 Barrier/Reduction
 #pragma xmp reduction (op: var)
 #pragma xmp barrier

 Global data move directives for collective comm./get/put

 Task parallelism
 #pragma xmp task on node-set

11XMP project

Co-array: XcalableMP Local view programming

 XcalableMP also includes CAF-like PGAS (Partitioned Global Address Space)
feature as "local view" programming.
 The basic execution model of XcalableMP is SPMD

 Each node executes the program independently on local data if no directive

 We adopt Co-Array as our PGAS feature.
 In C language, we propose array section construct (the same as Intel’s)
 Can be useful to optimize communications

 Support alias Global view to Local view

int A[10], B[10];
#pragma xmp coarray [*]: A, B
…
A[:] = B[:]:[10]; // broadcast

int A[10]:
int B[5];

A[5:5] = B[0:5];

Array section in C Co-array in C

“The Rise and Fall of High Performance Fortran … ”
by Kennedy, Koelbel and Zima [HOPL 2007]

 A very highly suggestive literature for language projects

 We would focus on this point:

12

The difficulty was that there were only limited ways for a user to
exercise fine-grained control over the code generated once the source of
performance bottlenecks was identified, … The HPF/JA extensions
ameliorated this a bit by providing more control over locality. However,
it is clear that additional features are needed in the language design to
override the compiler actions where that is necessary. Otherwise, the
user is relegated to solving a complicated inverse problem in which he
or she makes small changes to the distribution and loop structure in
hopes of tricking the compiler into doing what is needed.

What is different from at the time of HPF?

 Explicit message-passing using MPI still remains the dominant
programming system for scalable applications (more than at the time of
HPF?)
 Many software stacks on top of MPI (Apps framework libraries, …)

 Fortran 90 is mature enough now. C (and C++) is used for HPC apps.
 OpenMP supports both.

 Large-scale systems are more popular (BlueGene, the K-computer, …)
 Multicore and GPGPU/manycore make parallel programming more

complicated.

 PGAS is emerging and getting attentions from the community
 Model for scalable communication (than MPI?)

13

Status of XcalableMP

 Status of XcalableMP WG
 Monthly Meetings and ML, supported by

PC Cluster Consortium Japan.
 XMP Spec Version 1.0 was published (at

SC11). It includes XMP-IO and multicore
extension as a proposal in ver 1.0.

 Version 1.1: it will be revised at SC12

 Compiler & tools
 XMP C prototype compiler (version 0.6,

beta) for C is available.
 XMP Fortran F95 is now in alpha release

(limited).
 Open-source, source-to-source compiler

with the runtime using MPI

 Codes and Benchmarks
 NPB/XMP, HPCC benchmarks, Jacobi ..

 Platforms supported
 Linux Cluster, Cray XT5 … K computer
 Any systems running MPI. The current

runtime system designed on top of MPI

0

200

400

600

800

1 2 4 8 16

M
o

p
/s

Number of Node

XMP(without histgram)
XMP(with histgram)
MPI

0

60

120

180

1 2 4 8 16

M
o

p
/s

Number of Node

PC ClusterT2K Tsukuba System

0

1000

2000

3000

4000

1 2 4 8 16

M
o

p
/s

Number of Node

XMP(1d)
XMP(2d)
MPI

0

500

1000

1500

2000

2500

1 2 4 8 16

M
o

p
/s

Number of Node

PC ClusterT2K Tsukuba System

NPB IS performance

NPB CG performace

• Coarray is used
• Performance

comparable to ＭＰＩ

• Two-dimensional
Parallelization

• Performance
comparable to ＭＰＩ

 What is SCALEp
 SCALE project: (Parallel) Climate code for large eddy

simulation
 SCALEp is a kinetic core in SCALE
 A typical stencil computation

 How to parallelize
1. 2D block distribution of 3D array.
2. Paralleling double nested loop by loop directives
3. Insert reflect directives for the communication periodic

neighbor elements.
 Options: Runtime optimization using RDMA of K

computer for neighbor communications

15

Parallelization of SCALEp by XMP

16

Parallelization of SCALEp by XMP

!$xmp nodes p(N1,N2)
!$xmp template t(IA,JA)
!$xmp distribute t(block,block) onto p

real(8) :: dens(0:KA,IA,JA)
!$xmp align (*,i,j) &
!$xmp with t(i,j) :: dens, ...
!$xmp shadow (0,2,2) :: dens, ...

!$xmp reflect (dens(0,/periodic/2,&
!$xmp /periodic/2), ...)

!$xmp loop (ix,jy) on t(ix,jy)
do jy = JS, JE
do ix = IS, IE
do kz = KS+2, KE-2
... dens(kz,ix+1,jy) ...

end do
end do

end do

Data distribution

Neighbor comm

Loop paralization

Declarations for
Node array and
template

Performance results of K computer

17

0

50

100

150

200

250

0 50 100 150 200 250

Sp
ee

du
p

(s
in

gl
e=

1)

Number of Nodes

XMP

RDMA

MPI

 Size horizontal 512x512, vertical128
 Execution time for 500 steps.
 Assign XMP node to one node. Local program is parallelized by automatic

paralleling compiler by Fujitsu.

