
On the Containerization and Orchestration of RISC-V
architectures for Edge-Cloud computing

Francesco Lumpp
Dept. of Innovation Medicine - Univ. Verona

Italy, Verona
francesco.lumpp@univr.it

Francesco Barchi
Dept. of Electrical, Electronic, and Information

Engineering - Univ. Bologna
Italy, Bologna

francesco.barchi@unibo.it

Andrea Acquaviva
Dept. of Electrical, Electronic, and Information

Engineering - Univ. Bologna
Italy, Bologna

andrea.acquaviva@unibo.it

Nicola Bombieri
Dept. of Innovation Medicine - Univ. Verona

Italy, Verona
nicola.bombieri@univr.it

ABSTRACT
Containerization technologies, orchestration systems and
open hardware architectures, such as RISC-V, are crucial
as the foundation of open digital infrastructures for the
computing continuum - the seamless distribution of data
and computation across platforms with heterogeneous ca-
pabilities. However, it is unknown how containerization
technologies and orchestration systems, such as Kubernetes,
would impact performance in new architectures based on
RISC-V. This work aims to address this question and intro-
duces KubeEdge-V, an orchestration platform for RISC-V
systems. We define the minimum components required to
support the basic features of the containerization and orches-
tration platforms: network plug-ins, container runtimes and
computational/networking requirements, and we evaluated
KubeEdge-V performance on a prototype of a distributed
computing system based on SiFive processors called Monte
Cimone. Finally, the paper compares the performance of
KubeEdge-V on SiFive processors with an equivalent system
based on ARM architecture featuring the same power enve-
lope.

ACM Reference Format:
Francesco Lumpp, Francesco Barchi, AndreaAcquaviva, andNicola Bombieri.
2023. On the Containerization and Orchestration of RISC-V architectures
for Edge-Cloud computing . In 3rd Eclipse Security, AI, Architecture and
Modelling Conference on Cloud to Edge Continuum (ESAAM 2023), Octo-
ber 17, 2023, Ludwigsburg, Germany. ACM, New York, NY, USA, 8 pages.
https://doi.org/10.1145/3624486.3624490

1 INTRODUCTION
In recent years, there has been considerable interest in open hard-
ware architectures, which allow innovation in processors to take

This work is licensed under a Creative Commons Attribution International
4.0 License.

ESAAM 2023, October 17, 2023, Ludwigsburg, Germany
© 2023 Copyright held by the owner/author(s).
ACM ISBN 979-8-4007-0835-0/23/10.
https://doi.org/10.1145/3624486.3624490

place faster and faster, covering the whole computing continuum
spectrum from cloud to edge and low-power systems. RISC-V ar-
chitectures play a dominant role in this context for both academic
and industrial product designs [4, 11].

Unlocking the potential of these architectures in the context of
the computing continuum is essential to open the way to future
systems entirely based on open and novel hardware. Indeed, the
European Commission is pushing the development of HPC, cloud
and edge computing systems based on RISC-V [2], which is already
gaining momentum in edge and microcontroller architectures. Con-
sequently, it is of utmost importance to concurrently bring the
related software ecosystem at the same technology readiness level
to support this evolution. A great effort is already happening in
this direction, as indicated by the growing software libraries and
tools for RISC-V [3]. This effort is still missing regarding software
infrastructures and tools for the computing continuum. A first step
in this direction requires a preliminary evaluation and profiling of
the containerization software on RISC-V processors and platforms
to identify possible bottlenecks to be faced in next-generation ar-
chitectures. However, RISC-V processors are not yet present in
commercial distributed computing platforms. Consequently, no
container software version has yet been ported or profiled on these
systems.

This paper aims to fill this gap by porting and profiling an or-
chestration platform (Kubedge-V) to a RISC-V cluster prototype
based on SiFive processors. The cluster, called Monte Cimone, was
designed to open the way to the future edge computing systems
based on RISC-V [5]. We identified the minimum components to
support the basic features of container orchestration, the required
network plugins (e.g., Flannel, EdgeMesh), and the container run-
time (e.g., runc with CRI-O) to be employed for the target RISC-V
architecture.

In its current implementation, Monte Cimone performance per
Watt lies in the class of high performance edge computing plat-
forms. For this reason, we considered a reference architecture made
of a Kubernetes node running on a high-performance server (with
an Intel Xeon processor) and KubeEdge-V running on Monte Ci-
mone. This setting allowed us to profile the execution of KubeEdge-
V on RISC-V to characterize its overheads on different benchmark

21

https://orcid.org/0000-0001-5876-2487
https://orcid.org/0000-0001-5155-6883
https://orcid.org/0000-0002-7323-759X
https://orcid.org/0000-0003-3256-5885
https://doi.org/10.1145/3624486.3624490
https://creativecommons.org/licenses/by/4.0/
https://creativecommons.org/licenses/by/4.0/
https://doi.org/10.1145/3624486.3624490
http://crossmark.crossref.org/dialog/?doi=10.1145%2F3624486.3624490&domain=pdf&date_stamp=2023-10-17


ESAAM 2023, October 17, 2023, Ludwigsburg, Germany Francesco Lumpp, Francesco Barchi, Andrea Acquaviva, and Nicola Bombieri

suites (Phoronix, OSBench, IPC-Benchmark and stress-ng). In addi-
tion, we show the overhead introduced by the KubeEdge-V system
on both execution time and memory usage. Using a set of bench-
marks and scaling the number of used containers, we show how
the system performs under different load levels, finally compar-
ing it with an equivalent system based on an ARM architecture
featuring the same power envelope. The results show that the so-
lution is feasible and that the performance degradation caused by
containerisation on RISC-V systems is comparable to the perfor-
mance degradation observed on the ARM system. We also identify
which operations are mostly impacted by the container runtime and
should be considered for future software or hardware optimizations.

2 BACKGROUND AND RELATEDWORK
This section introduces the RISC-V architecture and the importance
of an open-source instruction set architecture. It also provides an
analysis of the efforts made in the state-of-the-art research work
to analyze containerization and orchestration overhead on perfor-
mance, focusing on edge-based computing platforms.

2.1 RISC-V CPU
RISC-V is an open-source instruction set architecture (ISA) devel-
oped by researchers at the University of California, Berkeley, in
2010 [18]. The acronym RISC stands for Reduced Instruction Set
Computer, which means the architecture has a smaller set of sim-
ple and standardized instructions. The simplicity and modularity
of the RISC-V ISA make it ideal for various computing devices
such as smartphones, tablets, embedded systems, but also high-
performance computing (HPC) systems. Additionally, the open-
source nature of RISC-V allows anyone to design and manufacture
chips based on the architecture, encouraging innovation and com-
petition in the market.

The RISC-V architecture has evolved over the years, and vari-
ous versions have been released, including RV32I, RV32E and their
64 bits counterparts. The different letters in the naming scheme
indicate variations in the ISA features. For example, “I” stands for
the base integer instructions, “E” stands for the embedded profile,
“F” includes instructions for single-precision floating-point arith-
metic, and “D” for double-precision floating-point arithmetic. The
RISC-V architecture also supports extensions that can be added to
the base ISA to enhance functionality, such as the vector “V”, bit
manipulation “B”, and compressed-instructions “C” extensions.

RISC-V technologies have gained popularity in recent years, with
many companies adopting the architecture in their products. For
instance, SiFive, a leading RISC-V chip designer, provides a range of
processors for various applications, including embedded systems,
IoT devices, and HPC systems. Other companies, such as Western
Digital, NVIDIA, and Qualcomm, use RISC-V in their products.

The future of RISC-V technologies looks promising, with ongo-
ing developments and collaborations among industry players and
academia. The European Commission, for instance, in the context
of the chip sovereignty strategy, is pushing open-source architec-
tures and RISC-V, in particular, as a future seed for HPC systems [1].
This leads to a possible future scenario of edge and cloud systems
composed of heterogeneous architectures with specific features (en-
abled by the RISC-V customizability), where computing continuum

technologies play a crucial role in achieving global optimization
thanks to orchestration.

2.2 Containerization and orchestration for
Edge-Cloud architectures

Many works in literature have analyzed the impact of containeriza-
tion, with several benchmarks emerging as standard, such as CPU
compression/decompression of files, system memory and storage
latency, as well as network bandwidth and latency. Other works
have also analyzed specific applications such as MySQL for cloud
environments and REST applications for IoT.

The authors at IBM have analyzed the impacts of containeriza-
tion with many different benchmarks, such as pxz for decompres-
sion, linpack for floating point performance, Stream for memory
and netperf for the network. They found little performance over-
head and some network latency degradation due to the Network
Address Translation (NAT) [10]. In an HPC-focused work [17], the
authors have used different benchmarks, such as sysbench, Stream
and HPCG, to measure the performance impact of containerization,
finding no significant CPU overhead, but discovering a higher mem-
ory usage for containerized applications. In [16], the authors used
the Phoronix test suite to benchmark the containerization over-
head and analyze the impact of orchestration. They found minimal
overhead in containerization and a worst-case scenario of 8% re-
duced performance when using an orchestration platform such as
Kubernetes.

Internet-of-Things (IoT) architectures have also been analyzed
with several different benchmarks. In [13], the authors used 7zip for
compression/decompression, OpenSSL for cryptography, RAMspeed
for systemmemory latency, Tio for disk performance and sockperf
for the network. In [9], the authors tested edge architectures based
on AWS Greengrass and Microsoft Azure IoT Edge with custom-
made benchmarks for speech and image recognition and found
some limitations in system throughput when using containeriza-
tion.

Other works, such as [15] and [12], have also compared the
performance of containerization on different architectures like x86
and ARM. In the first work, many benchmarks were used, such
as lmbench , netperf, sysbench and linpack, showing negligible
overhead in all types of tests. In the second work, the authors
analyzed the impact of containerization on REST services, finding
that while the overhead of containerization is negligible, there are
latency spikes when measuring end-to-end latency for the service.

When analyzing containers, the authors of [19], focused on the
delay between a container being scheduled for execution and the
container actually starting, and found that delay is very low and
predictable, correlating the delay to the number of containers active
on the device.

In [6], the authors built a complex architecture for data anal-
ysis, with edge nodes collecting data to compute and a suite of
applications to analyze and store the data. These applications are
distributed either on the edge nodes themselves or on fog or cloud
nodes. They found that edge computing is a valid and strong al-
ternative to fog or cloud computing while the amount of data to
compute is lower than a threshold, thanks to a much lower average
latency.

22



On the Containerization and Orchestration of RISC-V architectures for Edge-Cloud computing ESAAM 2023, October 17, 2023, Ludwigsburg, Germany

Figure 1: The Monte Cimone Server Blade hosts two SiFive
Freedom U740 SoCs and has a form factor of 4.44 cm (1 Rack-
Unit) in height, 42.50 cm in width, and 40 cm in depth. Each
RISC-V board has dimensions of 170mm by 170mm. Image
from [5].

Since no prior work on the impact of containerization and or-
chestration on RISC-V exists, we present such an analysis, which
includes the impact and scaling, by using a series of synthetic
benchmark suites: sysbench, the Phoronix test suite, Stream,
OSBench, the IPC_benchmark and stress-ng.

3 THE KUBEEDGE-V PLATFORM
In this work, we developed and characterized an orchestration plat-
form, KubeEdge-V, on a prototype RISC-V system. The prototype
system is a computer cluster called “Monte Cimone”. Monte Ci-
mone nodes have been designed to explore RISC-V as the core for
future edge nodes, as will be summarized in Section 3.1. Currently,
the computational power delivered by these nodes makes them
suitable for edge applications. For this reason, the reference system
we consider is made of an x86 as the cloud node and RISC-V as the
edge node, where we ported and profiled the KubeEdge platform,
as explained in Section 3.2.

3.1 The Monte Cimone cluster
Monte Cimone represents a prototype and experimental platform
of a comprehensive RISC-V (RV64) computing cluster, enclosing all
the essential hardware components apart from processors, such as
primary memory, non-volatile storage, and interconnect [5]. It is
composed of eight computing nodes; each one is based on the U740
SoC from SiFive and integrates four U74 RV64GCB application cores
(the U74 processor is a dual issue in-order execution pipeline, with a
peak sustainable execution rate of two instructions per clock cycle),
running up to 1.2 GHz and 16GiB of DDR4, 1 TiB node-local NVME
storage, and PCIe expansion cards. The U740 is Linux-capable SoC
with a consumption of 6Watt, placing the system in a low-power
category, making it suitable for an edge-computing role.

Kubernetes Master

Device0

Device1

ETCD
Controller 
manager

API serverScheduler

Kubelet Kube-proxy

Devicen

Kubelet Kube-proxy

POD0 PODj

cont1

cont0 cont0…

POD0

cont0

…

Kubelet Kube-proxy

POD0

cont0
KubeEdge

POD1

Cloud
core

Devicee1

EdgeCore

POD0

cont0

Local
Data
store

Deviceek

EdgeCore

POD0

cont0

Local
Data
store

Edge
Mesh

Master
relay

…

Figure 2: Kubernetes and KubeEdge architecture.

Actually, Monte Cimone nodes use a 1Gbps Ethernet copper
interface. As described in [5], to improve the network throughput
and the communication latency, the authors tested a Mellanox
ConnectX-4 FDR HCA (Infiniband FDR HCA (56Gbit/s) successfully
ran an IB ping test and showed that a full InfiniBand support could
be feasible. This feature is currently under development and not
actually available due to incompatibilities between the software
stack and the kernel driver.

As the target is to head towards high performance edge/fog com-
puting, with a final goal to scale towards HPC systems based on
RISC-V, an entire HPC software ecosystem and a complete system
monitoring infrastructure has been ported to Monte Cimone. In
particular, it runs a software stack composed of a job scheduler
(SLURM), an LDAP server, the Spack package manager with compil-
ers toolchains and scientific libraries, and a monitoring framework
based on ExaMon. It is established that actual HPC applications
can be executed on Monte Cimone [5].

3.2 Kubernetes for RISC-V
Kubernetes is an open-source system for automating deployment,
scaling, and management of containerized applications [7]. Its ar-
chitecture, the computing cluster, is composed of at least one device:
the Kubernetes master. Multiple devices can be connected to the
master, with each of them having one kubelet software unit. When
devices are connected to the master, they become nodes of the clus-
ter. Each kubelet manages one or more pods. Pods are logical units
used to cluster related containers to share resources. Each pod can
have one or more containers, each containing one application. Fig.
2 shows a summary where each Kubernetes component is high-
lighted in blue, pods are dark red, and containers are green. The
Kubernetes master controls the state of the cluster nodes through
a controller manager, a database of the cluster information (etcd),
and a scheduler unit. The scheduler manages container deploy-
ments across the cluster nodes. The functional units (i.e., master

23



ESAAM 2023, October 17, 2023, Ludwigsburg, Germany Francesco Lumpp, Francesco Barchi, Andrea Acquaviva, and Nicola Bombieri

EdgeCore

CRI-O

Runc

Linux Kernel

Containerimage

CloudCore

CRI-O downloads and 
stores the images on 
the device

Kubelet (edge)

Master (cloud)

EdgeMesh
network

Figure 3: Software stack for KubeEdge on RISC-V.

and kubelets) communicate through the HTTP REST protocol. The
master manages kubelet requests through an API server [8].

On the RISC-V edge nodes, we do not use Kubernetes but a
lightweight, edge-oriented solution: KubeEdge. KubeEdge is an
open-source system for extending native containerized applica-
tion orchestration capabilities to hosts at the edge. It is built upon
Kubernetes and provides fundamental infrastructure support for
network, application deployment and metadata synchronization be-
tween cloud and edge [14]. Fig.2 shows the KubeEdge components
in orange. KubeEdge is composed of two main components, the
CloudCore, which is installed through a Kubernetes container on
the master node, and the EdgeCore, which is a process that acts as a
kubelet on the edge nodes. Unlike Kubernetes, KubeEdge can adapt
to mesh networks and take into account nodes that momentarily
become unreachable due to harsh conditions, e.g., remote sensors or
drones. To achieve offline computing, KubeEdge maintains a copy
of the cluster status locally on the edge device to then synchronize
it with the master once connectivity is restored.

Fig. 3 shows a summary of the software stack required to run
containers and KubeEdge on RISC-V. Container deployment re-
quests are made through Kubernetes, which are then synchronized
by the CloudCore to the appropriate EdgeCore, passing informa-
tion through the mesh network. The EdgeCore on the target device,
chosen by the Kubernetes scheduler, receives the deployment and
requests a new container to CRI-O (Container Runtime Interface
for the Open Container Initiative). If the container image is not
already available on the device, CRI-O downloads it. CRI-O then
starts runc (Container Runtime) with the requested parameters and
network plugin (i.e., EdgeMesh). Runc starts the processes inside
the container and assigns them to the appropriate namespace and
cgroup through Linux system calls.

In this work, we compiled the whole environment for RISC-V,
including the container images used to run Kubernetes. We also
provide a detailed guide on Gitlab1. The installation process is
summarized in the following.

1https://gitlab.com/parco-lab/kubeedge-v

3.2.1 Installing KubeEdge on RISC-V.. An up-to-date version of the
Go language compiler is a main requirement to install the com-
plete software stack. An older version of Golang can be obtained
from the standard Ubuntu repository to bootstrap the latest. The
installation process begins with runc and CRI-O. Configuration of
CRI-O requires special attention, specifically adjusting the default
container registry to a custom one for the pause image. The pause
container is crucial for Linux to configure namespaces and cgroups
before starting the actual container. However, since the pause image
does not exist for RISC-V, it needs to be created and hosted on a
custom registry. To achieve this, we extracted the Dockerfile from
Kubernetes’ pause and compiled it for RISC-V. Next, we require
the EdgeMesh network plugin, which enables the communication
between edge devices through a mesh network while relaying Ku-
bernetes master data. The plugin requires a container running on
each device for data handling and communication. Hence, we man-
ually compiled EdgeMesh executables for both x86 and RISC-V,
to create a single multi-architecture container. To support RISC-V,
modifications were made to one of the libraries used by EdgeMesh.
Detailed information is available on the Gitlab page. Finally, we
compiled the KubeEdge executables, created the container images,
and installed them. These operations involved extracting Docker-
files from the original KubeEdge, as the original containers rely
on special “builder” containers not yet available for RISC-V. With
these steps completed, KubeEdge can be successfully installed and
used.

4 EXPERIMENTAL RESULTS
In the following sections, we first explore the setup used to perform
the benchmarks, such as hardware and software configurations.
Then, we analyze the performance impact of containerization and
orchestration on the RISC-V CPU performance and compare it with
the overhead found on ARM. Finally, we analyze the impact of such
a platform on the system memory of the RISC-V board.

4.1 Setup
We tested a set of benchmarks to quantify the containerization
impact on the performance of the RISC-V architecture. We used
sysbench for CPU integer performance, the Stream benchmark for
system memory throughput, the Phoronix test suite for CPU-related
benchmarks and finally, a sequence of system-related tests to verify
the OS performance. We run each benchmark both natively and
through KubeEdge. After benchmarking each test on the RISC-V
board, we also verified the performance overhead on an ARM-based
board, which allowed us to compare the results and verify if there
was any odd behaviour on the new architecture.

To run the containerized benchmarks, we configured a Kuber-
netes cluster with the master running on an x86 device. Then, we
connected two boards with KubeEdge. The first board is a SiFive
HiFive Unmatched, part of the Monte Cimone cluster, and has a
RISC-V architecture. It runs Ubuntu 21.10 with Linux Kernel 5.11
on 4 CPU cores running at 1GHz and 16GB of system memory. The
second board is an ARM-based Jetson Xavier AGX running Ubuntu
20.04 with Linux kernel 5.10 on 8 CPU cores running at 2.3GHz
and 16GB of system memory. We configured the Jetson to run with

24



On the Containerization and Orchestration of RISC-V architectures for Edge-Cloud computing ESAAM 2023, October 17, 2023, Ludwigsburg, Germany

only 4 cores at 1.2GHz, achieving a comparable CPU power target
to the RISC-V board (i.e., ≈ 5𝑊 ).

In our analysis, we focused on a single node because our testing
methodology is specifically designed to assess the architectural
impact of containerisation, regardless of orchestration policies. Be-
cause of this, the network impact of orchestration has not been
measured as it would not influence the outcome of this analysis.
Regardless, it is important to note that the results obtained with
the profiling we conducted are not restricted by the use of a single
node and can be applied in broader scenarios.

4.2 Benchmark results
4.2.1 Sysbench. Table 1 shows the results obtained with sysbench,
averaging 15 runs. The benchmark was run with 4 threads, calculat-
ing up to 1 million primes with a 1-hour time limit. The Unmatched
board exhibits significantly lower performance compared to the
Jeston, but it experiences less overhead from containerization.

4.2.2 Stream. Table 1 also shows the results for the STREAM
benchmark run on the system memory, averaging 15 runs. The test
was configured to run on 1.8GB of data with 4 threads. The memory
subsystem of the Unmatched board is composed of 16GB of DDR4
memory running in dual channel with a 64bit bus at 1866MT/s,
resulting in a theoretical maximum bandwidth of ≈ 30GB/s. The
Jetson board has a much more sophisticated memory subsystem,
composed of 16GB of LPDDR4x memory running in dual channel
with a 256-bit bus at 1333MT/s, resulting in a theoretical maxi-
mum bandwidth of ≈ 86GB/s. As expected, due to these significant
hardware differences, we observed that the RISC-V board is much
slower in this test compared to the Jetson. On the other hand, the
KubeEdge overhead is lower on the RISC-V architecture across all
memory tests.

4.2.3 Phoronix. Table 2 shows the results obtained with the Pho-
ronix test suite. We used the following benchmarks, and each run
15 times:

• Rodinia: this suite is focused on accelerator-based computing.
We picked the LavaMD test based on OpenMP to benchmark
multicore performance;

• x265: a CPU-based encoding test;
• 7-Zip: uses the integrated compression and decompression
benchmarks;

• POV-Ray: Persistence of Vision Raytracer, it creates 3D graph-
ics using ray tracing;

• OpenSSL: tests SSL (Secure Sockets Layer) and TLS (Trans-
port Layer Security) protocols, including encryption and
hashing functions.

This suite presents similar results to the other benchmarks. The
Jetson is much faster, but the container overhead is, on average,
37.5% smaller on the RISC-V Unmatched board.

4.2.4 OSBench, IPC-Benchmark and stress-ng. Table 3 shows the re-
sults for OSBench, IPC-Benchmark and stress-ng, with each test run
15 times. OSBench performs a series of activities that are connected
to running applications. The IPC benchmark tests the inter-process
communication speed and bandwidth. Finally, stress-ng contains a
multitude of tests, and those targeting the operating system were
chosen.

The most interesting results are related to the file creation (i.e.,
the first two rows of Table 3) and process-related activities, i.e.,
launch programs, create processes, pthread and context switching.
The former because it shows how the file system architecture of
containers creates significant overhead in I/O-based operations and
when excluded by mounting a native folder of the underlying file
system inside the container, this overhead is not present anymore.
This applies to RISC-V and to some extent to ARM64, where there
is still some overhead even with the native mount. The latter shows
how RISC-V incurs significant overhead when operations related
to processes or threads are made. This is especially true when
considering context switching, where RISC-V loses 21.4% of its
performance.

To find the root cause of this delay on RISC-V, we run the
stress-ng context switch benchmark again, along with the perf
profiler. We found that system calls were taking significantly longer,
up to 40% more time. This additional delay is probably caused by
the container runtime system call interception procedure.

When a containerized process makes a system call, it is inter-
cepted by the container runtime, which verifies permissions and
resources before initiating the system call. To verify this theory,
we formulated the following hypothesis: If the overhead is due to
the container runtime rather than additional data structures from
namespaces and cgroups, and if we manually associate a native
process with the same namespaces and cgroups as a KubeEdge
process, then:

(1) system call speed should be comparable to a native execution;
(2) cgroups/namespaces should work exactly like in KubeEdge.
To verify these hypotheses, we conducted the following exper-

iment. We used two test applications: the first performs around
10 million system calls and calculates their average time, which
should verify the initial hypothesis. The second test allocates 1GB
of systemmemory using mallocwith a cgroup limitation of 128MB,
checking if the cgroup works properly by killing the application
when it exceeds the limit. We used three configurations: native as a
reference, containerized using KubeEdge, and manually associating
the processes within namespaces/cgroups using nsenter and the
cgroup parameter.

Table 4 shows the results. Native system calls and manual names-
paces/cgroups have the same execution time, while there is a slow-
down when executing them from KubeEdge. However, namespaces
and cgroupswereworking correctly, as thememory allocation appli-
cation was killed once it exceeded 128MB. Therefore, the overhead
is definitely not caused by namespaces/cgroups, but it is reasonable
to think that it is caused by the container runtime. This hypothesis
does not justify the difference in overhead between RISC-V and
ARM, but, as we manually ported the container runtime in this
work, there may be differences due to implementation or architec-
tural optimizations missing for RISC-V.

4.3 Memory footprint and scaling analysis
We also analyzed the memory usage of this lightweight virtual-
ization technique to assess potential overhead beyond CPU per-
formance. This involved testing applications running inside and
outside containers, as well as the additional software overhead
incurred by the system for containerization and orchestration.

25



ESAAM 2023, October 17, 2023, Ludwigsburg, Germany Francesco Lumpp, Francesco Barchi, Andrea Acquaviva, and Nicola Bombieri

Table 1: STREAM benchmark results with native and KubeEdge configurations on both RISC-V and ARM64. ▲ higher is better,
▼ lower is better. The results include the relative standard deviation.

Suite Test RISC-V ARM64 Unit

Native KubeEdge Overhead Native KubeEdge Overhead (▲▼)

Sysbench CPU 2.47 ± 0.39% 2.46 ± 0.19% -0.4% 6.40 ± 0.06% 6.17 ± 1.72% -3.7% event/s ▲

Stream

Copy 1 294 ± 0.28% 1 274 ± 2.19% -1.5% 22 765 ± 0.51% 20 500 ± 0.15% -10.0% MiB/s ▲

Scale 1 079 ± 0.50% 1 096 ± 1.01% 1.6% 23 929 ± 0.42% 22 229 ± 0.09% -7.1% MiB/s ▲

Add 1 181 ± 0.20% 1 180 ± 0.89% -0.1% 24 866 ± 0.10% 24 719 ± 1.46% -0.6% MiB/s ▲

Triad 1 165 ± 0.18% 1 191 ± 1.94% 2.2% 24 499 ± 0.25% 25 044 ± 0.16% 2.2% MiB/s ▲

Average: 0.4% Average: -3.8%

Table 2: Phoronix test suite results with native and KubeEdge configurations on both RISC-V and ARM64. ▲ higher is better, ▼
lower is better. The results include the relative standard deviation.

Suite Test RISC-V ARM64 Unit

Native KubeEdge Overhead Native KubeEdge Overhead (▲▼)

Rodinia LavaMD 12 298 ± 1.05% 13 462 ± 0.41% -8.7% 1 731 ± 2.41% 1 742 ± 2.05% -0.6% s ▼

x265 3.4 Bos. 1080p 150 ± 0.00% 140 ± 0.00% -6.7% 1 240 ± 0.00% 1 230 ± 0.24% -0.8% fps ▲

[1e-3] Bos. 4K 30 ± 0.00% 30 ± 0.00% 0.0% 340 ± 0.00% 330 ± 0.00% -2.9% fps ▲

7-Zip Comp. 1 782 ± 0.80% 1 805 ± 0.77% 1.3% 7 972 ± 2.63% 6 983 ± 3.60% -12.4% MIPS ▲

Decomp. 3 433 ± 0.54% 3 430 ± 0.13% -0.1% 5 921 ± 1.36% 5 309 ± 1.10% -10.3% MIPS ▲

POV-Ray Trace 2 948 ± 1.33% 2 948 ± 1.79% -0.0% 541 ± 2.38% 541 ± 2.38% 0.0% s ▼

OpenSSL

SHA256 66.1 ± 0.38% 63.1 ± 5.89% -4.7% 1 589.5 ± 2.45% 1 593.1 ± 0.69% 0.2% MB/s ▲

SHA512 92.7 ± 1.08% 90.4 ± 0.63% -2.5% 398.5 ± 0.38% 387.1 ± 0.40% -2.9% MB/s ▲

RSA4096_s 41 ± 0.00% 42 ± 0.73% 0.5% 155 ± 0.47% 147 ± 0.48% -5.2% sign/s ▲

RSA4096_v 3 139 ± 0.28% 3 124 ± 0.69% -0.5% 11 01 ± 0.01%7 10 532 ± 0.05% -4.4% verify/s ▲

AES-128 65.0 ± 0.37% 64.1 ± 0.12% -1.5% 4 964.8 ± 0.07% 4 866.4 ± 0.09% -2.0% MB/s ▲

AES-256 53.9 ± 0.55% 53.2 ± 0.62% -1.3% 3 677.2 ± 0.01% 4 027.0 ± 0.05% 9.5% MB/s ▲

ChaCha20 231.1 ± 0.27% 227.3 ± 0.09% -1.7% 2 213.2 ± 0.01% 2 080.9 ± 0.08% -6.0% MB/s ▲

Poly1305 168.0 ± 0.26% 165.7 ± 0.33% -1.4% 1 497.4 ± 0.04% 1 415.9 ± 0.03% -5.4% MB/s ▲

Average: -1.9% Average: -3.1%

Firstly, we measured the average memory usage of the runc, CRI-
O, KubeEdge and EdgeMesh processes. All these applications are
required to run containers. Table 5 shows the results. The highest
impacts are caused by KubeEdge, EdgeMesh and CRI-O, which
combined use almost 250MB of system memory. This overhead is
substantial and could limit the applicability of such an orchestration
system for edge applications.

The second test uses a varying number of identical containers to
analyze what is the memory overhead for each container started.
The containers only start the sleep process and thus use no memory
or CPU. We obtain the available memory readings by accessing the
/proc/meminfo variable. Table 6 shows the results. The overhead
is measured at 1.51MB per container when using 4 containers, but
it grows to 1.92MB per container when there are 64 containers
deployed. These overheads can be attributed to runc, which was
measured at 1.5MB per container in Table 5. Overall, the mem-
ory impact of 64 containers running is 122.52MB, which is quite
significant.

The last test compares memory utilization and performance in
the sysbench memory benchmark. It compares five configurations:

native execution with one thread in total and one thread per CPU
core, containerized execution with one container and either one
thread in total or one thread per CPU core, and containerized exe-
cution with one container per CPU core.

Table 7 shows the results. The first two rows compare native
and containerized execution with only one thread. The difference is
negligible despite the containerized benchmark using slightly more
memory. This may be caused by the nature of libraries in contain-
ers, requiring static linking and resulting in higher system memory
usage. When comparing versions with four workers, performance
is similar across configurations, but memory usage increases sig-
nificantly with multiple containers due to the less efficient nature
of running multiple identical copies compared to letting the bench-
mark handle four threads independently.

5 DISCUSSION AND FUTUREWORK
The results presented in Section 4 demonstrate that containeriza-
tion on the RISC-V architecture is a viable approach that does not
impose significant performance overhead. In comparison to ARM64,

26



On the Containerization and Orchestration of RISC-V architectures for Edge-Cloud computing ESAAM 2023, October 17, 2023, Ludwigsburg, Germany

Table 3: OSBench, IPC-Benchmark and stress-ng results with native and KubeEdge configurations, on both RISC-V and ARM64.
▲ higher is better, ▼ lower is better. The results include the relative standard deviation.

Suite Test RISC-V ARM64 Unit

Native KubeEdge Overhead Native KubeEdge Overhead (▲▼)

OSBench

Create Files 426 ± 5.48% 596 ± 4.32% -28.4% 183 ± 2.28% 279 ± 4.71% -34.3% 𝜇s ▼

ë mount - 425 ± 5.42% 0.2% - 190 ± 3.64% -3.7% 𝜇s ▼

C. Thread 197 ± 2.15% 212 ± 0.28% -7.1% 136 ± 2.27% 171 ± 2.06% -20.6% 𝜇s ▼

C. Processes 402 ± 2.37% 452 ± 2.47% -10.9% 262 ± 1.59% 272 ± 1.05% -3.7% 𝜇s ▼

Launch Prog. 618 ± 1.07% 673 ± 0.23% -8.2% 924 ± 0.71% 818 ± 1.32% 13.0% 𝜇s ▼

Malloc 1 399 ± 0.43% 1 424 ± 1.19% -1.8% 565 ± 1.49% 542 ± 0.23% 4.2% 𝜇s ▼

IPC
bench.

TCP Socket 117 705 ± 5.01% 112 507 ± 14.08% -4.4% 137 263 ± 2.35% 136 135 ± 0.99% -0.8% msg/s ▲

PIPE Un. 270 793 ± 0.36% 274 776 ± 1.96% 1.5% 154 689 ± 0.25% 152 937 ± 0.38% -1.1% msg/s ▲

PIPE FIFO 269 931 ± 1.24% 266 265 ± 1.35% -1.4% 155 666 ± 0.33% 157 966 ± 0.47% 1.5% msg/s ▲

Unix Socket 95 177 ± 2.17% 95 469 ± 0.94% 0.3% 90 560 ± 1.13% 92 266 ± 1.37% 1.9% msg/s ▲

Stress-ng

Mutex 158 964 ± 2.16% 135 805 ± 0.52% -14.6% 57 472 ± 4.30% 56 235 ± 2.49% -2.2% ops/s ▲

Malloc 99 067 ± 0.17% 97 948 ± 0.98% -1.1% 54 320 ± 1.16% 52 001 ± 0.22% -4.3% ops/s ▲

Forking 1 851 ± 2.34% 2 020 ± 1.98% 9.1% 1 601 ± 3.07% 1 684 ± 12.59% 5.2% ops/s ▲

Pthread 2 690 ± 1.07% 2 340 ± 0.53% -13.0% 3 633 ± 2.06% 3 473 ± 0.91% -4.4% ops/s ▲

CPU cache 23 254 ± 4.07% 23 549 ± 8.91% 1.3% 182 042 ± 1.59% 177 345 ± 1.07% -2.6% ops/s ▲

Semaphores 845 130 ± 2.05% 793 821 ± 2.37% -6.1% 201 253 ± 9.87% 194 155 ± 5.54% -3.5% ops/s ▲

Matrix Math 518 ± 0.22% 507 ± 0.17% -2.1% 3 698 ± 0.15% 3 770 ± 0.05% 1.9% ops/s ▲

Vector Math 348 ± 0.33% 354 ± 0.02% 1.8% 6 484 ± 0.53% 7 084 ± 0.69% 9.3% ops/s ▲

Functions 2 294 ± 0.36% 2 249 ± 0.36% -2.0% 18 766 ± 2.58% 16 004 ± 2.43% -14.7% ops/s ▲

Cntx switch 84 110 ± 4.90% 66 082 ± 5.53% -21.4% 47 990 ± 2.48% 47 865 ± 2.39% -0.3% ops/s ▲

Average: −5.4% Average: −2.9%

Table 4: Overhead analysis for RISC-V system calls under
KubeEdge.

Native Manual KubeEdgens/cgroup

Syscall time 192.18 ns 191.72 ns 206.48 ns
OOM kill No Yes Yes

Table 5: Average memory usage for KubeEdge software stack.
The results include the relative standard deviation.

Process Avg.Memory
[MiB]

KubeEdge 87.4 ± 2.10%
EdgeMesh 82.6 ± 3.10%
cri-o 76.6 ± 3.00%
runc 1.5 ± 5.30%

Table 6: Scaling overhead of containers.

Containers Available Memory Overhead
[#] [MiB] [MiB]

0 15 827 -
4 15 821 1.4
16 15 804 1.4
32 15 775 1.6
64 15 704 1.9

Table 7: Results for running sysbench memory benchmark
in different process, thread and containerization configura-
tions.

Conf. Result CPU Mem.
[MiB/s] [%] [MiB]

Native - 1T 306.7 24.9% 1000.0
1 cont. - 1T 305.9 25.0% 1000.4

Native - 4T 1058.5 92.7% 1000.0
1 cont. - 4T 1065.6 88.6% 1000.1
4 cont. - 1T 1078.9 95.7% 1068.4

containerized applications on RISC-V experience less performance
degradation on average, maintaining performance levels compara-
ble to native execution.

However, the tests conducted on the operating system level
reveal certain shortcomings in the software implementation of
the platform on RISC-V. Figure 4 shows the average overhead of
the benchmarks of Table 2 as application-based and the average
overhead of the benchmarks of Table 3 asOS-based. In the graph it is
clear that there is a significant difference in the overhead depending
on the class of benchmark used. Notably, the context switching test
in Table 3 highlights a performance loss of 21.43% for RISC-V when
containerized, in contrast to a mere 0.26% for ARM64. These delays
can likely be attributed to a lack of optimization in the software
stack specifically designed for container environments.

27



ESAAM 2023, October 17, 2023, Ludwigsburg, Germany Francesco Lumpp, Francesco Barchi, Andrea Acquaviva, and Nicola Bombieri

Figure 4: Graph comparing the performance loss for RISC-V
and ARM64 in performance- and OS-related benchmarks.

Furthermore, it is worth noting that the memory overhead intro-
duced by containerized applications running on RISC-V is substan-
tial. With an additional system memory usage of nearly 250MB,
certain edge computing devices, such as embedded boards with
lower power targets and limited system memory, may lack the
necessary capabilities to accommodate this complex orchestration
platform.

Nevertheless, these findings underline the viability of container-
ization and orchestration on the RISC-V architecture, exhibiting
similar benefits and limitations to those observed on ARM64. The
deployment of containerized applications on RISC-V can gener-
ally be done without significant concerns regarding performance
degradation. However, caution should be exercised when deploying
system call-intensive applications or when utilizing this architec-
ture on memory-constrained devices.

A future research goal would be analyzing the potential of dis-
tributed applications that have to take into account the orchestra-
tion and communication aspects of computation, which are un-
explored within a containerised RISC-V-based system. Such an
analysis of distributed applications, leveraging the capabilities of
orchestration, would be needed to clarify the scalability and ap-
plicability of orchestration within the RISC-V architecture. This
exploration could contribute to improving the suitability of RISC-V
for high performance edge/fog computing, and eventually HPC
systems.

6 CONCLUSIONS
This work effectively integrated the essential components of con-
tainerization and orchestration, such as network plugins and con-
tainer runtime. The results demonstrate that these technologies
can be efficiently implemented on a distributed computing system
based on the RISC-V architecture with a small performance degra-
dation; it is comparable to the performance degradation observed
on the ARM architecture.

The experimental findings presented in this work carry signif-
icant implications for the development of open digital infrastruc-
tures. They broaden the possibilities for creating large computing
ecosystems with an open and scalable infrastructure, leveraging
the open hardware design of RISC-V as well as the adaptability and
effectiveness of containerization and orchestration technologies.

ACKNOWLEDGMENTS
This study was carried out within the PNRR research activities
of the consortium iNEST (Interconnected North-Est Innovation
Ecosystem) funded by the European Union Next-GenerationEU
(Piano Nazionale di Ripresa e Resilienza (PNRR) – Missione 4 Com-
ponente 2, Investimento 1.5 – D.D. 1058 23/06/2022, ECS_00000043).
This manuscript reflects only the Authors’ views and opinions, nei-
ther the European Union nor the European Commission can be
considered responsible for them.

REFERENCES
[1] [n. d.]. EU roadmap open hardware. https://digital-strategy.ec.europa.eu/en/

library/recommendations-and-roadmap-european-sovereignty-open-source-
hardware-software-and-risc-v

[2] [n. d.]. EuroHPC Risc-V. https://eurohpc-ju.europa.eu/new-call-developing-hpc-
ecosystem-based-risc-v-2023-02-01_en

[3] [n. d.]. RISC-V Wiki. https://wiki.riscv.org/display/HOME/RISC-V+Software+
Ecosystem

[4] [n. d.]. SiFive Website. https://www.sifive.com/
[5] Andrea Bartolini, Federico Ficarelli, Emanuele Parisi, Francesco Beneventi,

Francesco Barchi, Daniele Gregori, Fabrizio Magugliani, Marco Cicala, Cosimo
Gianfreda, Daniele Cesarini, et al. 2022. Monte Cimone: Paving the Road for
the First Generation of RISC-V High-Performance Computers. In 2022 IEEE 35th
International System-on-Chip Conference (SOCC). IEEE, 1–6.

[6] Francisco Carpio, Marta Delgado, and Admela Jukan. 2020. Engineering and
Experimentally Benchmarking a Container-based Edge Computing System. In
ICC 2020 - 2020 IEEE International Conference on Communications (ICC). 1–6.
https://doi.org/10.1109/ICC40277.2020.9148636

[7] Cloud Native Computing Foundation. 2023. Kubernetes. https://kubernetes.io
[8] Cloud Native Computing Foundation. 2023. Kubernetes Architecture. https:

//kubernetes.io/docs/concepts/architecture/cloud-controller
[9] Anirban Das, Stacy Patterson, and Mike Wittie. 2018. EdgeBench: Benchmarking

Edge Computing Platforms. In 2018 IEEE/ACM International Conference on Utility
and Cloud Computing Companion (UCC Companion). 175–180. https://doi.org/10.
1109/UCC-Companion.2018.00053

[10] W. Felter, A. Ferreira, R. Rajamony, and J. Rubio. 2015. An updated performance
comparison of virtual machines and Linux containers. In 2015 IEEE International
Symposium on Performance Analysis of Systems and Software (ISPASS). 171–172.
https://doi.org/10.1109/ISPASS.2015.7095802

[11] Eric Flamand, Davide Rossi, Francesco Conti, Igor Loi, Antonio Pullini, Florent
Rotenberg, and Luca Benini. 2018. GAP-8: A RISC-V SoC for AI at the Edge of
the IoT. In 2018 IEEE 29th International Conference on Application-specific Systems,
Architectures and Processors (ASAP). IEEE, 1–4.

[12] Tom Goethals, Merlijn Sebrechts, Mays Al-Naday, Bruno Volckaert, and Filip
De Turck. 2022. A Functional and Performance Benchmark of Lightweight Virtu-
alization Platforms for Edge Computing. In 2022 IEEE International Conference on
Edge Computing and Communications (EDGE). 60–68. https://doi.org/10.1109/
EDGE55608.2022.00020

[13] Yinluo Jing, Zhiyi Qiao, and Richard O. Sinnott. 2022. Benchmarking Container
Technologies For IoT Environments. In 2022 Seventh International Conference on
Fog and Mobile Edge Computing (FMEC). 1–8. https://doi.org/10.1109/FMEC57183.
2022.10062773

[14] KubeEdge. 2023. KubeEdge. https://kubeedge.io
[15] Vivian Noronha, Ekkehard Lang, Maximilian Riegel, and Thomas Bauschert.

2018. Performance Evaluation of Container Based Virtualization on Embedded
Microprocessors. In 2018 30th International Teletraffic Congress (ITC 30), Vol. 01.
79–84. https://doi.org/10.1109/ITC30.2018.00019

[16] Yao Pan, Ian Chen, Francisco Brasileiro, Glenn Jayaputera, and Richard Sinnott.
2019. A Performance Comparison of Cloud-Based Container Orchestration
Tools. In 2019 IEEE International Conference on Big Knowledge (ICBK). 191–198.
https://doi.org/10.1109/ICBK.2019.00033

[17] Alfred Torrez, Timothy Randles, and Reid Priedhorsky. 2019. HPC Container
Runtimes have Minimal or No Performance Impact. In 2019 IEEE/ACM Inter-
national Workshop on Containers and New Orchestration Paradigms for Isolated
Environments in HPC (CANOPIE-HPC). 37–42. https://doi.org/10.1109/CANOPIE-
HPC49598.2019.00010

[18] Andrew Waterman, Yunsup Lee, David A Patterson, and Krste Asanovic. 2011.
The risc-v instruction set manual, volume i: Base user-level isa. EECS Department,
UC Berkeley, Tech. Rep. UCB/EECS-2011-62 116 (2011).

[19] Tianming Wei, Madhav Malhotra, Bing Gao, Tomas Bednar, Derek Jacoby, and
Yvonne Coady. 2017. No such thing as a “free launch”? Systematic benchmarking
of containers. In 2017 IEEE Pacific Rim Conference on Communications, Computers
and Signal Processing (PACRIM). https://doi.org/10.1109/PACRIM.2017.8121922

28

https://digital-strategy.ec.europa.eu/en/library/recommendations-and-roadmap-european-sovereignty-open-source-hardware-software-and-risc-v
https://digital-strategy.ec.europa.eu/en/library/recommendations-and-roadmap-european-sovereignty-open-source-hardware-software-and-risc-v
https://digital-strategy.ec.europa.eu/en/library/recommendations-and-roadmap-european-sovereignty-open-source-hardware-software-and-risc-v
https://eurohpc-ju.europa.eu/new-call-developing-hpc-ecosystem-based-risc-v-2023-02-01_en
https://eurohpc-ju.europa.eu/new-call-developing-hpc-ecosystem-based-risc-v-2023-02-01_en
https://wiki.riscv.org/display/HOME/RISC-V+Software+Ecosystem
https://wiki.riscv.org/display/HOME/RISC-V+Software+Ecosystem
https://www.sifive.com/
https://doi.org/10.1109/ICC40277.2020.9148636
https://kubernetes.io
https://kubernetes.io/docs/concepts/ architecture/cloud-controller
https://kubernetes.io/docs/concepts/ architecture/cloud-controller
https://doi.org/10.1109/UCC-Companion.2018.00053
https://doi.org/10.1109/UCC-Companion.2018.00053
https://doi.org/10.1109/ISPASS.2015.7095802
https://doi.org/10.1109/EDGE55608.2022.00020
https://doi.org/10.1109/EDGE55608.2022.00020
https://doi.org/10.1109/FMEC57183.2022.10062773
https://doi.org/10.1109/FMEC57183.2022.10062773
https://kubeedge.io
https://doi.org/10.1109/ITC30.2018.00019
https://doi.org/10.1109/ICBK.2019.00033
https://doi.org/10.1109/CANOPIE-HPC49598.2019.00010
https://doi.org/10.1109/CANOPIE-HPC49598.2019.00010
https://doi.org/10.1109/PACRIM.2017.8121922

	Abstract
	1 Introduction
	2 Background and related work
	2.1 RISC-V CPU
	2.2 Containerization and orchestration for Edge-Cloud architectures

	3 The KubeEdge-V platform
	3.1 The Monte Cimone cluster
	3.2 Kubernetes for RISC-V

	4 Experimental results
	4.1 Setup
	4.2 Benchmark results
	4.3 Memory footprint and scaling analysis

	5 Discussion and future work
	6 Conclusions
	Acknowledgments
	References

